Nishikawa (2007) proposed to reformulate the classical Poisson equation as a steady state problem for a linear hyperbolic system. This results in optimal error estimates for both the solution of the elliptic equation and its gradient. However, it prevents the application of well-known solvers for elliptic problems. We show connections to a discontinuous Galerkin (DG) method analyzed by Cockburn, Guzm\'an, and Wang (2009) that is very difficult to implement in general. Next, we demonstrate how this method can be implemented efficiently using summation by parts (SBP) operators, in particular in the context of SBP DG methods such as the DG spectral element method (DGSEM). The resulting scheme combines nice properties of both the hyperbolic and the elliptic point of view, in particular a high order of convergence of the gradients, which is one order higher than what one would usually expect from DG methods for elliptic problems.
翻译:Nishikawa(2007年)提议将古典Poisson方程式重新配置为线性双曲系统的稳定状态问题。 这导致对椭圆方程式及其梯度的解决方案进行最佳误差估计。 但是,它阻止了对椭圆方程式应用众所周知的解决方案。 我们展示了与Cockburn、Guzm/'an和Wang (2009年)分析的不连续的Galerkin(DG)方法的连接,该方法一般很难实施。 其次,我们展示了如何使用部分操作者(SBP)的相加法高效地实施这种方法,特别是在SBP D光谱元素法(DG SEM)等SD方法背景下。 由此产生的方案将双曲和椭圆点观点的优点结合起来, 特别是高水平的梯度趋同, 高于人们通常从D方法对椭圆问题的期望。</s>