We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. In addition, we introduce a novel data-efficient variant of calibration that avoids the need for hold-out calibration sets, which we refer to as cross-calibration. Causal isotonic cross-calibration takes cross-fitted predictors and outputs a single calibrated predictor obtained using all available data. We establish under weak conditions that causal isotonic calibration and cross-calibration both achieve fast doubly-robust calibration rates so long as either the propensity score or outcome regression is estimated well in an appropriate sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm to provide strong distribution-free calibration guarantees while preserving predictive performance.
翻译:我们提出因果等离子校准,这是用于校准不同处理效果预测器的新颖的非参数性方法。此外,我们引入了一种新的数据高效校准变方,避免了延缓校准装置(我们称之为交叉校准)的必要性。 Causal等离子体交叉校准采用交叉安装的预测器和输出出一个使用所有可用数据获得的单一校准预测器。我们在脆弱条件下建立因果等离子校准和交叉校准均能达到快速双重温校准率,只要对偏差分或结果回归进行适当意义上的估算。 拟议的因果异体校准器可以围绕任何黑盒学习算法进行包包,以便在保持预测性能的同时提供强有力的无分布校准保证。</s>