Consider a matrix $\mathbf{F} \in \mathbb{K}^{m \times n}$ of univariate polynomials over a field~$\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $\mathbf{F}$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors.
翻译:考虑一个 $\ mathbf{F} 矩阵 $\ mathbb{K} {F} \ in\ mathbb{Ktimes n} 。 我们研究计算列级配置值$\ mathbf{F}$ 的问题。 为此, 我们首先给出一种算法, 改进周、 Labahn 和 Storjohann 最小内核基算法( 运行于 ISAC 2012 ) 。 然后我们提供第二种算法, 计算 $\ mathbf{F} 的列级配置值, 其等级复杂度为 $\\\ tilde} (r\ omega-2} n (m+D) 。 $\ mathb{K} 。 这里, $D$D 是 $\ mathbf{F} $, 美元\ amega$\ a 和 $\\\ tite $\\\\\\\\\\ 隐藏对逻辑要素系数的计算 。