For a given nonnegative matrix $A=(A_{ij})$, the matrix scaling problem asks whether $A$ can be scaled to a doubly stochastic matrix $XAY$ for some positive diagonal matrices $X,Y$. The Sinkhorn algorithm is a simple iterative algorithm, which repeats row-normalization $A_{ij} \leftarrow A_{ij}/\sum_{j}A_{ij}$ and column-normalization $A_{ij} \leftarrow A_{ij}/\sum_{i}A_{ij}$ alternatively. By this algorithm, $A$ converges to a doubly stochastic matrix in limit if and only if the bipartite graph associated with $A$ has a perfect matching. This property can decide the existence of a perfect matching in a given bipartite graph $G$, which is identified with the $0,1$-matrix $A_G$. Linial, Samorodnitsky, and Wigderson showed that a polynomial number of the Sinkhorn iterations for $A_G$ decides whether $G$ has a perfect matching. In this paper, we show an extension of this result: If $G$ has no perfect matching, then a polynomial number of the Sinkhorn iterations identifies a Hall blocker -- a certificate of the nonexistence of a perfect matching. Our analysis is based on an interpretation of the Sinkhorn algorithm as alternating KL-divergence minimization (Csisz\'{a}r and Tusn\'{a}dy 1984, Gietl and Reffel 2013) and its limiting behavior for a nonscalable matrix (Aas 2014). We also relate the Sinkhorn limit with parametric network flow, principal partition of polymatroids, and the Dulmage-Mendelsohn decomposition of a bipartite graph.
翻译:对于给定的非负矩阵 $A= (A ⁇ ij}) 美元, 矩阵缩放问题询问 $A 是否可以缩到一个双振矩阵 $X, 美元。 Sinkhorn 算法是一个简单的迭代算法, 它重复了一行调整 $A ⁇ ij} /\ sumff} A ⁇ ij} 美元和一列调整 $A ⁇ ij} leftrow A ⁇ j} /\ sumíi} A ⁇ j} 美元 。 通过这个算法, $A 将一个双振动矩阵 $XAA 美元, 在某些正对正对面矩阵 $X, 美元。 这个属性可以决定给定一双平方平方平方平方平方平方平方平方平 $G美元, 与美元平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。