Data hiding is the procedure of encoding desired information into an image to resist potential noises while ensuring the embedded image has little perceptual perturbations from the original image. Recently, with the tremendous successes gained by deep neural networks in various fields, data hiding areas have attracted increasing number of attentions. The neglect of considering the pixel sensitivity within the cover image of deep neural methods will inevitably affect the model robustness for information hiding. Targeting at the problem, in this paper, we propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism to endow different sensitivity to different pixels. With the proposed component, the model can spotlight pixels with more robustness for embedding data. Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets under multiple settings. Besides, we further identify and discuss the connections between the proposed inverse gradient attention and high-frequency regions within images.
翻译:数据隐藏是将理想信息编码成图像以抵制潜在噪音的程序,同时确保嵌入图像与原始图像没有多少感知性扰动。 最近,随着深神经网络在各个领域取得巨大成功,数据隐藏区吸引了越来越多的注意力。 忽视深神经方法封面图像中的像素敏感性将不可避免地影响信息隐藏的模型稳健性。 在本文中,我们提出与反梯度注意(Inverse Graent attention)一起的新的深数据隐藏计划,将对抗性学习和关注机制的理念进行梳理,以对不同的像素产生不同敏感度。 有了拟议组件,模型可以聚焦像素,更有力地嵌入数据。 随机而广泛的实验显示,拟议的模型在多个环境中两个流行数据集上超越了最先进的方法。 此外,我们进一步确定和讨论拟议反梯度注意与图像中高频区域之间的联系。