Recently, studies have indicated that adversarial attacks pose a threat to deep learning systems. However, when there are only adversarial examples, people cannot get the original images, so there is research on reversible adversarial attacks. However, the existing strategies are aimed at invisible adversarial perturbation, and do not consider the case of locally visible adversarial perturbation. In this article, we generate reversible adversarial examples for local visual adversarial perturbation, and use reversible data embedding technology to embed the information needed to restore the original image into the adversarial examples to generate examples that are both adversarial and reversible. Experiments on ImageNet dataset show that our method can restore the original image losslessly while ensuring the attack capability.
翻译:最近的研究显示,对抗性攻击对深层学习系统构成威胁,然而,当只有对抗性例子时,人们无法获得原始图像,因此对可逆的对抗性攻击进行了研究。然而,现有战略的目标是无形的对抗性干扰,而没有考虑当地可见的对抗性扰动案例。在本篇文章中,我们为当地的视觉对抗性扰动生成了可逆的对抗性攻击实例,并使用可逆的数据嵌入技术将恢复原始图像所需的信息嵌入对抗性例子中,以产生既具有对抗性又可逆性的例子。 图像网络数据集实验显示,我们的方法可以在确保攻击能力的同时,不遗余地恢复原始图像。