论文题目: Learning Conceptual-Contextual Embeddings for Medical Text

论文摘要:

对于自然语言理解任务来说,外部知识通常是有用的。本文介绍了一个上下文文本表示模型,称为概念上下文(CC)嵌入,它将结构化的知识合并到文本表示中。与实体嵌入方法不同,文中提到的方法将知识图编码到上下文模型中。就像预先训练好的语言模型一样,CC嵌入可以很容易地在广泛的任务中重用。模型利用语义泛化,有效地编码了庞大的UMLS数据库。电子实验健康记录(EHRs)和医疗文本处理基准表明,而使得模型大大提高了监督医疗NLP任务的性能。

成为VIP会员查看完整内容
49

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
AAAI 2020论文解读:关注实体以更好地理解文本
AI科技评论
17+阅读 · 2019年11月20日
知识图谱嵌入(KGE):方法和应用的综述
专知
56+阅读 · 2019年8月25日
论文浅尝 | 用于知识图中链接预测的嵌入方法 SimplE
开放知识图谱
22+阅读 · 2019年4月3日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
论文浅尝 | 基于知识库的自然语言理解 02#
开放知识图谱
8+阅读 · 2019年2月24日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
微信扫码咨询专知VIP会员