Previous studies have shown that leveraging domain index can significantly boost domain adaptation performance \cite{arXiv:2007.01807, arXiv:2202.03628}. However, such domain indices are not always available. To address this challenge, we first provide a formal definition of domain index from the probabilistic perspective, and then propose an adversarial variational Bayesian framework that infers domain indices from multi-domain data, thereby providing additional insight on domain relations and improving domain adaptation performance. Our theoretical analysis shows that our adversarial variational Bayesian framework finds the optimal domain index at equilibrium. Empirical results on both synthetic and real data verify that our model can produce interpretable domain indices which enable us to achieve superior performance compared to state-of-the-art domain adaptation methods.
翻译:先前的研究显示,杠杆化域指数可以大大提升域适应性绩效 2007.01807, arXiv: 2007.01807, arXiv: 2202.003628}。然而,这种域指数并非总能提供。为了应对这一挑战,我们首先从概率角度对域指数作出正式定义,然后提出一个对抗性可变贝叶斯框架,从多域数据中推断域指数,从而对域关系提供更多的见解,并改善域适应性绩效。我们的理论分析表明,我们的对称型巴耶西亚框架在平衡时找到了最佳域指数。合成和实际数据的经验结果都证实,我们的模型能够产生可解释的域指数,使我们能够取得优于最新领域适应方法的优异性业绩。