奥本大学的Anh M. Nguyen在Github上发布了关于AI可解释性文献的汇总,包含工具库、综述、近几年来各大会议期刊上发表的关于可解释性的相关工作等。
作者 | Anh M. Nguyen
编译 | Xiaowen
https://github.com/anguyen8/XAI-papers
DeepVis: Deep Visualization Toolbox. Yosinski et al. 2015 code | pdf
https://github.com/yosinski/deep-visualization-toolbox
http://yosinski.com/deepvis
SWAP: Generate adversarial poses of objects in a 3D space. Alcorn et al. 2018 code | pdf
https://github.com/airalcorn2/strike-with-a-pose
https://arxiv.org/abs/1811.11553
Libraries
CNN visualizations (activation maximization, PyTorch)
https://github.com/utkuozbulak/pytorch-cnn-visualizations
iNNvestigate (heatmaps, Keras)
https://github.com/albermax/innvestigate
DeepExplain (heatmaps, Keras)
https://github.com/marcoancona/DeepExplain
Lucid (activation maximization, heatmaps, Tensorflow)
https://github.com/tensorflow/lucid
Surveys
Methods for Interpreting and Understanding Deep Neural Networks. Montavon et al. 2017 pdf
https://arxiv.org/pdf/1706.07979.pdf
Visualizations of Deep Neural Networks in Computer Vision: A Survey. Seifert et al. 2017 pdf
https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6
How convolutional neural network see the world - A survey of convolutional neural network visualization methods. Qin et al. 2018 pdf
https://arxiv.org/abs/1804.11191
A brief survey of visualization methods for deep learning models from the perspective of Explainable AI. Chalkiadakis 2018 pdf
https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf
A Survey Of Methods For Explaining Black Box Models. Guidotti et al. 2018 pdf
https://arxiv.org/pdf/1802.01933.pdf
Understanding Neural Networks via Feature Visualization: A survey. Nguyen et al. 2019 pdf
https://arxiv.org/pdf/1904.08939.pdf
Explaining Explanations: An Overview of Interpretability of Machine Learning. Gilpin et al. 2019 pdf
https://arxiv.org/pdf/1806.00069.pdf
The Mythos of Model Interpretability. Lipton 2016 pdf
https://arxiv.org/abs/1606.03490
Towards A Rigorous Science of Interpretable Machine Learning. Doshi-Velez & Kim. 2017 pdf
https://arxiv.org/pdf/1702.08608.pdf
Interpretable machine learning: definitions, methods, and applications. Murdoch et al. 2019 pdf
https://arxiv.org/pdf/1901.04592v1.pdf
Books
A Guide for Making Black Box Models Explainable. Molnar 2019 pdf
https://christophm.github.io/interpretable-ml-book/
A. Explaining inner-workings
A1. Visualizing Preferred Stimuli
Synthesizing images / Activation Maximization
AM: Visualizing higher-layer features of a deep network. Erhan et al. 2009 pdf
https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network
Deep inside convolutional networks: Visualising image classification models and saliency maps. Simonyan et al. 2013pdf
https://arxiv.org/pdf/1312.6034.pdf
DeepVis: Understanding Neural Networks through Deep Visualization. Yosinski et al. 2015 pdf | url
http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf
http://yosinski.com/deepvis
MFV: Multifaceted Feature Visualization: Uncovering the different types of features learned by each neuron in deep neural networks. Nguyen et al. 2016 pdf | code
http://www.evolvingai.org/files/mfv_icml_workshop_16.pdf
https://github.com/Evolving-AI-Lab/mfv
DGN-AM: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. Nguyen et al. 2016 pdf | code
https://github.com/anguyen8/XAI-papers/blob/master/anhnguyen.me/project/synthesizing
https://github.com/Evolving-AI-Lab/synthesizing
PPGN: Plug and Play Generative Networks. Nguyen et al. 2017 pdf | code
https://github.com/anguyen8/XAI-papers/blob/master/anhnguyen.me/project/ppgn
https://github.com/Evolving-AI-Lab/ppgn
Feature Visualization. Olah et al. 2017 url
https://distill.pub/2017/feature-visualization
Diverse feature visualizations reveal invariances in early layers of deep neural networks. Cadena et al. 2018 pdf
https://arxiv.org/pdf/1807.10589.pdf
Computer Vision with a Single (Robust) Classifier. Santurkar et al. 2019 pdf | blog | code
https://arxiv.org/abs/1906.09453
http://gradsci.org/robust_apps
https://github.com/MadryLab/robustness_applications
Real images / Segmentation Masks
Visualizing and Understanding Recurrent Networks. Kaparthey et al. 2015 pdf
https://arxiv.org/abs/1506.02078
Object Detectors Emerge in Deep Scene CNNs. Zhou et al. 2015 pdf
https://arxiv.org/abs/1412.6856
Understanding Deep Architectures by Interpretable Visual Summaries pdf
https://arxiv.org/pdf/1801.09103.pdf
A2. Inverting Neural Networks
Understanding Deep Image Representations by Inverting Them pdf
https://arxiv.org/abs/1412.0035
Inverting Visual Representations with Convolutional Networks pdf
https://arxiv.org/abs/1506.02753
Neural network inversion beyond gradient descent pdf
http://opt-ml.org/papers/OPT2017_paper_38.pdf
A3. Distilling DNNs into more interpretable models
Interpreting CNNs via Decision Trees pdf
https://arxiv.org/abs/1802.00121
Distilling a Neural Network Into a Soft Decision Tree pdf
https://arxiv.org/abs/1711.09784
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation. Tan et al. 2018 pdf
https://arxiv.org/abs/1710.06169
Improving the Interpretability of Deep Neural Networks with Knowledge Distillation. Liu et al. 2018 pdf
https://arxiv.org/pdf/1812.10924.pdf
A4. Quantitatively characterizing hidden features
TCAV: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors. Kim et al. 2018
pdf https://arxiv.org/abs/1711.11279 |
code https://github.com/tensorflow/tcav
Automating Interpretability: Discovering and Testing Visual Concepts Learned by Neural Networks. Ghorbani et al. 2019 pdf
https://arxiv.org/abs/1902.03129
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. Raghu et al. 2017 pdf | code
https://arxiv.org/abs/1706.05806
https://github.com/google/svcca
A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens. Saini et al. 2018 pdf
https://arxiv.org/abs/1806.02012
Network Dissection: Quantifying Interpretability of Deep Visual Representations. Bau et al. 2017 url | pdf
http://netdissect.csail.mit.edu/
http://netdissect.csail.mit.edu/final-network-dissection.pdf
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks. Bau et al. 2018 pdf
https://arxiv.org/abs/1811.10597
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. Fong & Vedaldi 2018 pdf
https://arxiv.org/abs/1801.03454
A5. Network surgery
How Important Is a Neuron? Dhamdhere et al. 2018 pdf
https://arxiv.org/pdf/1805.12233.pdf
A6. Sensitivity analysis
NLIZE: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models. Liu et al. 2018 pdf
http://www.sci.utah.edu/~shusenl/publications/paper_entailVis.pdf
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks pdf
https://arxiv.org/pdf/1606.07757.pdf
Deep inside convolutional networks: Visualising image classification models and saliency maps. Simonyan et al. 2013pdf
https://arxiv.org/pdf/1312.6034.pdf
Deconvnet: Visualizing and understanding convolutional networks. Zeiler et al. 2014 pdf
https://arxiv.org/pdf/1311.2901.pdf
Guided-backprop: Striving for simplicity: The all convolutional net. Springenberg et al. 2015 pdf
http://arxiv.org/pdf/1412.6806.pdf
DeepLIFT: Learning important features through propagating activation differences. Shrikumar et al. 2017 pdf
https://arxiv.org/pdf/1605.01713.pdf
Integrated Gradients: Axiomatic Attribution for Deep Networks. Sundararajan et al. 2018 pdf | code
http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf
https://github.com/ankurtaly/Integrated-Gradients
I-GOR: Visualizing Deep Networks by Optimizing with Integrated Gradients. Qi et al. 2019 pdf
https://arxiv.org/pdf/1905.00954.pdf
LRP: Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation pdf
https://arxiv.org/abs/1712.08268
DTD: Explaining NonLinear Classification Decisions With Deep Tayor Decomposition pdf
https://arxiv.org/abs/1512.02479
CAM: Learning Deep Features for Discriminative Localization. Zhou et al. 2016 code | web
https://github.com/metalbubble/CAM
http://cnnlocalization.csail.mit.edu/
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Selvaraju et al. 2017 pdf
https://arxiv.org/abs/1610.02391
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. Chattopadhyay et al. 2017 pdf | code
https://arxiv.org/abs/1710.11063
https://github.com/adityac94/Grad_CAM_plus_plus
Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique for Deep Convolutional Neural Network Models. Omeiza et al. 2019 pdf
https://arxiv.org/pdf/1908.01224.pdf
Interpretable Explanations of Black Boxes by Meaningful Perturbation. Fong et al. 2017 pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf
FIDO: Explaining image classifiers by counterfactual generation. Chang et al. 2019 pdf
https://arxiv.org/pdf/1807.08024.pdf
FG-Vis: Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. Wagner et al. 2019 pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Wagner_Interpretable_and_Fine-Grained_Visual_Explanations_for_Convolutional_Neural_Networks_CVPR_2019_paper.pdf
Visual explanation by interpretation: Improving visual feedback capabilities of deep neural networks. Oramas et al. 2019 pdf
https://arxiv.org/pdf/1712.06302.pdf
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks. Seo et al. 2018 pdf
https://arxiv.org/pdf/1807.11720.pdf
Occlusion: Visualizing and understanding convolutional networks. Zeiler et al. 2014 pdf
https://arxiv.org/pdf/1311.2901.pdf
PDA: Visualizing deep neural network decisions: Prediction difference analysis. Zintgraf et al. 2017 pdf
https://arxiv.org/pdf/1702.04595.pdf
RISE: Randomized Input Sampling for Explanation of Black-box Models. Petsiuk et al. 2018 pdf
https://arxiv.org/pdf/1806.07421.pdf
LIME: Why should i trust you?: Explaining the predictions of any classifier. Ribeiro et al. 2016 pdf | blog
https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
SHAP: A Unified Approach to Interpreting Model Predictions. Lundberg et al. 2017 pdf | code
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://github.com/slundberg/shap
OSFT: Interpreting Black Box Models via Hypothesis Testing. Burns et al. 2019 pdf
https://arxiv.org/pdf/1904.00045.pdf
The (Un)reliability of saliency methods. Kindermans et al. 2018 pdf
https://openreview.net/forum?id=r1Oen--RW
Sanity Checks for Saliency Maps. Adebayo et al. 2018 pdf
http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations. Nie et al. 2018 pdf
https://arxiv.org/abs/1805.07039
BIM: Towards Quantitative Evaluation of Interpretability Methods with Ground Truth. Yang et al. 2019 pdf
https://arxiv.org/abs/1907.09701
On the (In)fidelity and Sensitivity for Explanations. Yeh et al. 2019 pdf
https://arxiv.org/pdf/1901.09392.pdf
Learning how to explain neural networks: PatternNet and PatternAttribution pdf
https://arxiv.org/abs/1705.05598
Deep Learning for Case-Based Reasoning through Prototypes pdf
https://arxiv.org/pdf/1710.04806.pdf
Unsupervised Learning of Neural Networks to Explain Neural Networks pdf
https://arxiv.org/abs/1805.07468
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions pdf
https://arxiv.org/abs/1901.03729
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations pdf
https://arxiv.org/pdf/1702.07826.pdf
Towards robust interpretability with self-explaining neural networks. Alvarez-Melis and Jaakola 2018 pdf
http://people.csail.mit.edu/tommi/papers/SENN_paper.pdf
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections. Zhang et al. 2018 pdf
http://papers.nips.cc/paper/7736-interpreting-neural-network-judgments-via-minimal-stable-and-symbolic-corrections.pdf
Counterfactual Visual Explanations. Goyal et al. 2019 pdf
https://arxiv.org/pdf/1904.07451.pdf
Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 pdf
http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf
Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation pdf
http://www.antoniosliapis.com/papers/explainable_ai_for_designers.pdf
ICADx: Interpretable computer aided diagnosis of breast masses. Kim et al. 2018 pdf
https://arxiv.org/abs/1805.08960
Neural Network Interpretation via Fine Grained Textual Summarization. Guo et al. 2018 pdf
https://arxiv.org/pdf/1805.08969.pdf
LS-Tree: Model Interpretation When the Data Are Linguistic. Chen et al. 2019 pdf
https://arxiv.org/abs/1902.04187
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!560+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程