项目名称: 有序介孔炭的形态控制及其电容脱盐性能

项目编号: No.51272016

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 陈晓红

作者单位: 北京化工大学

项目金额: 80万元

中文摘要: 电容吸附法脱盐(Capacitive Deionization, CDI) 是一种新开发的水处理技术,目前脱盐过程的研究关键是提高电极材料的脱盐效果。为满足对电极材料良好的导电性和极化能力、高的比表面积以及快速的离子扩散等要求,本课题利用一步硬模板法,选用不同的炭源和模板剂,通过控制合成工艺条件,获得具有球形、棒状、陀螺形、饼状和花朵形等多种形态的短孔道有序介孔炭;进一步在扩孔剂和过渡金属催化剂作用下低温炭化获得直径可控的晶化程度较高的有序介孔炭,从而实现对材料的形貌、比表面积、孔道结构和长径比和骨架晶型的控制生成;探究合成不同形态和孔结构的控制因素和形成机理。系统研究多形态结构有序介孔炭材料对不同金属离子的电吸附性能,揭示复合材料组成成分、制备工艺和参数、形态结构与其电容脱盐性能间的相关性,提出利用短孔道有序介孔炭电极的电吸附脱盐新技术。

中文关键词: 有序介孔炭;形态控制;脱盐;;

英文摘要: With the availability of high surface area electrodes for energy storage, water desalination using (Capacitive Deionization, CDI) has emerged as an active research topic. In CDI, salt water passes across high surface area electrodes. During this process, voltage applied to the electrodes causes ions to electromigrate and adsorb on the electrode surfaces to shield the surface charge, thereby reducing the concentration of salt in the solution. In this project, OMC materials with various morphologies, including spherical, rod-like, gyroid-shaped, plate-like and flower-type, were synthesized using different carbon sources and changing the synthesis parameters. Herein we will use a convenient in situ graphitized route to convert them into semi-graphitized mesoporous carbons using transition metal salt as catalyst increasing conduct cyclic voltammetry and impedance. It will be analysed that the relations of particle morphology and internal pore network of prepared electrode materials including porosity、pore arrangement、pore size distribution and pore wall in electric double layer charging process with the electrochemical properties of all new ordered mesoporous carbon materials revealed by cyclic voltammetry and AC impedance spectroscopy tests, and the optimal synthesis condition and route.

英文关键词: mesepore carbon;odified structure;electrochemical capacitive deionization;;

成为VIP会员查看完整内容
0

相关内容

30家国产存储器及主控芯片厂商调研分析报告
专知会员服务
20+阅读 · 2022年3月19日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
2021中国工业视觉行业研究报告
专知会员服务
54+阅读 · 2021年9月22日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
25+阅读 · 2021年4月2日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
学习一个宫崎骏画风的图像风格转换GAN
AI科技评论
18+阅读 · 2020年3月13日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年6月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
小贴士
相关主题
相关VIP内容
30家国产存储器及主控芯片厂商调研分析报告
专知会员服务
20+阅读 · 2022年3月19日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
2021中国工业视觉行业研究报告
专知会员服务
54+阅读 · 2021年9月22日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
25+阅读 · 2021年4月2日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
学习一个宫崎骏画风的图像风格转换GAN
AI科技评论
18+阅读 · 2020年3月13日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员