This paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant (elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances between parametrized or unparametrized immersed surfaces represented as 3D meshes. Building on this, we develop tools for the statistical shape analysis of sets of surfaces, including methods for estimating Karcher means and performing tangent PCA on shape populations, and for computing parallel transport along paths of surfaces. Our proposed approach fundamentally relies on a relaxed variational formulation for the geodesic matching problem via the use of varifold fidelity terms, which enable us to enforce reparametrization independence when computing geodesics between unparametrized surfaces, while also yielding versatile algorithms that allow us to compare surfaces with varying sampling or mesh structures. Importantly, we demonstrate how our relaxed variational framework can be extended to tackle partially observed data. The different benefits of our numerical pipeline are illustrated over various examples, synthetic and real.
翻译:本文介绍了一套数字方法,用于在变异(弹性)二级Sobolev 度量的设置范围内对3D表面进行里曼尼形分析。 更具体地说, 我们处理的是在3Dmeshes 代表的对称或非对称沉浸表面之间计算大地测量学和大地测量距离。 在此基础上, 我们开发了一套工具,用于对各组表面进行统计形状分析, 包括估算Karcher 值的方法和在形状群中运行相干五氯苯甲醚的方法, 以及计算沿表面路径平行迁移的方法。 我们拟议的方法从根本上依靠一种宽松的变异配方程式, 来应对大地测量匹配问题。 通过使用变异对称术语, 使我们能够在计算非对称表面之间的大地测量学时, 执行重新对称独立, 同时产生多种通用的算法, 使我们能够比较不同取样或介质结构的表面。 我们展示了如何扩大我们较宽松的变异框架, 来处理部分观测到的数据。 我们的数字管道的不同好处在各种例子、 合成和真实的例子中加以说明。