We present a hierarchy of semidefinite programs (SDPs) for the problem of fitting a shape-constrained (multivariate) polynomial to noisy evaluations of an unknown shape-constrained function. These shape constraints include convexity or monotonicity over a box. We show that polynomial functions that are optimal to any fixed level of our hierarchy form a consistent estimator of the underlying shape-constrained function. As a byproduct of the proof, we establish that sum-of-squares-convex polynomials are dense in the set of polynomials that are convex over an arbitrary box. A similar sum of squares type density result is established for monotone polynomials. In addition, we classify the complexity of convex and monotone polynomial regression as a function of the degree of the polynomial regressor. While our results show NP-hardness of these problems for degree three or larger, we can check numerically that our SDP-based regressors often achieve similar training error at low levels of the hierarchy. Finally, on the computational side, we present an empirical comparison of our SDP-based convex regressors with the convex least squares estimator introduced in [Hildreth, 1954] and [Holloway, 1979] and show that our regressor is valuable in settings where the number of data points is large and the dimension is relatively small. We demonstrate the performance of our regressor for the problem of computing optimal transport maps in a color transfer task and that of estimating the optimal value function of a conic program. A real-time application of the latter problem to inventory management contract negotiation is presented.
翻译:我们提出了一个半确定性程序( SDPs) 的等级, 用来应对形状受限制( 多变量) 的多式多元程序, 以适应对未知形状受限制功能的杂音评价。 这些形状限制包括一个框上的共性或单调。 我们显示, 与任何固定等级相比, 最优于我们等级的多式程序( SDPs) 的多式函数构成一个对形状受限制功能的一致估计。 作为证据的副产品, 我们确定, 形状受限制( 多变量) 的多式多式多式多式多式多式多式多式多式多式多式多式程序( SDPs) 的问题在一组多式多式多式多式多式多式的多式多式多式程序( SDPstencial) 的问题中, 我们基于 SDP 的细式多式多式多式多式多式多式多式多式的多式多式多式多式多式多式的多式多式多式多式多式多式多式的多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式的多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多