In this work, we propose a task called "Scene Style Text Editing (SSTE)", changing the text content as well as the text style of the source image while keeping the original text scene. Existing methods neglect to fine-grained adjust the style of the foreground text, such as its rotation angle, color, and font type. To tackle this task, we propose a quadruple framework named "QuadNet" to embed and adjust foreground text styles in the latent feature space. Specifically, QuadNet consists of four parts, namely background inpainting, style encoder, content encoder, and fusion generator. The background inpainting erases the source text content and recovers the appropriate background with a highly authentic texture. The style encoder extracts the style embedding of the foreground text. The content encoder provides target text representations in the latent feature space to implement the content edits. The fusion generator combines the information yielded from the mentioned parts and generates the rendered text images. Practically, our method is capable of performing promisingly on real-world datasets with merely string-level annotation. To the best of our knowledge, our work is the first to finely manipulate the foreground text content and style by deeply semantic editing in the latent feature space. Extensive experiments demonstrate that QuadNet has the ability to generate photo-realistic foreground text and avoid source text shadows in real-world scenes when editing text content.
翻译:在本文中,我们提出了一项名为“场景风格文本编辑(SSTE)”的任务,该任务旨在在保持原始文本场景的情况下更改源图像的文本内容和文本样式。现有方法忽略调整前景文本的风格,例如旋转角度、颜色和字体类型等方面。为了解决这个问题,我们提出了一个名称为“ QuadNet”的四重框架,以在潜在特征空间中嵌入和调整前景文本样式。具体而言,QuadNet由四个部分组成,即背景修复、样式编码器、内容编码器和融合生成器。背景修复擦除源文本内容并恢复具有高度真实质感的背景。样式编码器提取前景文本的样式嵌入。内容编码器在潜在特征空间中提供目标文本表示,以实现内容编辑。融合生成器将从上述部分得到的信息结合起来,并生成渲染文本图像。在实际应用中,我们的方法能够在仅具有字符串级注释的情况下,在真实世界的数据集上表现出色。据我们所知,我们的工作是第一个通过对潜在特征空间进行深度语义编辑,精细地操纵前景文本内容和样式的工作。广泛的实验表明,QuadNet能够生成逼真的前景文本,并在编辑文本内容时避免源文本阴影。