项目名称: 基于多源语义表示学习的社交媒体文本属性情感分类研究

项目编号: No.61772135

项目类型: 面上项目

立项/批准年度: 2018

项目学科: 计算机科学学科

项目作者: 廖祥文

作者单位: 福州大学

项目金额: 16万元

中文摘要: 属性情感分类是社交媒体文本情感分析与挖掘领域的重要研究问题。现有方法主要利用文本内部特征构建分类模型,由于文本包含的语义信息有限,导致分类性能受限。考虑到社交媒体中的用户交互信息以及开放知识库的属性知识可以提供更多语义知识来源,本项目拟开展基于多源语义表示学习的社交媒体文本属性情感分类研究。具体包括:利用文本结构与情感信息进行注意力机制下的表示学习,研究基于上下文语境的文本情感语义表示方法;通过异质网络节点嵌入模拟面向用户、内容和属性,研究融合用户交互信息的文本情感语义表示方法;通过多源约束下的知识表示对属性进行情感推理与消歧,研究融合开放知识库的文本情感语义表示方法;应用端到端的学习机制,实现文本、用户与属性知识的统一语义表示,研究基于多源语义表示的属性情感分类方法。在此基础上,构建面向证券领域的情感分类示范应用。本研究将推动社交媒体文本情感分析的基础研究,也为社交媒体相关应用提供借鉴。

中文关键词: 情感分析;观点挖掘;情感分类;社交媒体文本挖掘;自然语言处理

英文摘要: Aspect-based sentiment classification is an importance topic in sentiment analysis, opinion mining and social media analysis. Recently, researchers focus on text features and text classification models. However, the confined semantic information from the text limits the performance of classifier. In practice, the interactive information between users in social media and the knowledge of aspect from knowledge base will provide more semantic information. In this project, we aim to use multi-source representation learning to improve aspect-based sentiment analysis in social media. Firstly, we will utilize syntactic structure and sentiment information by attention mechanism to map the text into low dimensional vector space in order to represent the text based on the context. Then, we will introduce user interactive information into representation learning by heterogeneous network embedding. In the knowledge representation, we plan to use multi-source restricted knowledge representation to learn the representation of aspect and introduce the aspect level knowledge representation into sentiment analysis by attention mechanism. Finally, we will design an End-to-End architecture to map the text, user and aspect knowledge into an unified representation for sentiment analysis in social media. The result of our work will improve the research of sentiment analysis in social media, and it will be also implemented in practical applications such as financial prediction by sentiment analysis.

英文关键词: Sentiment Analysis;Opinion Mining;Sentiment Classification;Social Media Text Mining;Natural Language Processing

成为VIP会员查看完整内容
4

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
自然语言处理中的文本表示研究
专知会员服务
56+阅读 · 2022年1月10日
专知会员服务
69+阅读 · 2021年5月21日
专知会员服务
27+阅读 · 2021年2月17日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
41+阅读 · 2020年9月7日
【新书】自然语言处理表示学习技术,349页pdf,清华大学
专知会员服务
173+阅读 · 2020年7月11日
 【中科院信工所】社交媒体情感分析,40页ppt
专知会员服务
99+阅读 · 2019年12月13日
自然语言处理中的文本表示研究
专知
0+阅读 · 2022年1月10日
【WWW2021】实体自适应语义依赖图立场检测
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2021年1月25日
小贴士
相关VIP内容
自然语言处理中的文本表示研究
专知会员服务
56+阅读 · 2022年1月10日
专知会员服务
69+阅读 · 2021年5月21日
专知会员服务
27+阅读 · 2021年2月17日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
41+阅读 · 2020年9月7日
【新书】自然语言处理表示学习技术,349页pdf,清华大学
专知会员服务
173+阅读 · 2020年7月11日
 【中科院信工所】社交媒体情感分析,40页ppt
专知会员服务
99+阅读 · 2019年12月13日
相关资讯
自然语言处理中的文本表示研究
专知
0+阅读 · 2022年1月10日
【WWW2021】实体自适应语义依赖图立场检测
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
相关基金
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员