We consider box-constrained integer programs with objective $g(Wx) + c^T x$, where $g$ is a "complicated" function with an $m$ dimensional domain. Here we assume we have $n \gg m$ variables and that $W \in \mathbb Z^{m \times n}$ is an integer matrix with coefficients of absolute value at most $\Delta$. We design an algorithm for this problem using only the mild assumption that the objective can be optimized efficiently when all but $m$ variables are fixed, yielding a running time of $n^m(m \Delta)^{O(m^2)}$. Moreover, we can avoid the term $n^m$ in several special cases, in particular when $c = 0$. Our approach can be applied in a variety of settings, generalizing several recent results. An important application are convex objectives of low domain dimension, where we imply a recent result by Hunkenschr\"oder et al. [SIOPT'22] for the 0-1-hypercube and sharp or separable convex $g$, assuming $W$ is given explicitly. By avoiding the direct use of proximity results, which only holds when $g$ is separable or sharp, we match their running time and generalize it for arbitrary convex functions. In the case where the objective is only accessible by an oracle and $W$ is unknown, we further show that their proximity framework can be implemented in $n (m \Delta)^{O(m^2)}$-time instead of $n (m \Delta)^{O(m^3)}$. Lastly, we extend the result by Eisenbrand and Weismantel [SODA'17, TALG'20] for integer programs with few constraints to a mixed-integer linear program setting where integer variables appear in only a small number of different constraints.


翻译:我们用目标为 $g( Wx) + c<unk> T x$( $g) 的框限制整数程序, 目标为 $g( 美元) 是一个“ 复杂” 功能, 以美元为维域。 在这里, 我们假设我们有 $ gg m 变量, 而$W\ in mathbb = m <unk> m\ <unk> m\ time n} 美元是一个包含绝对值系数的整数矩阵, 最多为 $\ Delta 。 我们设计了这个问题的算法。 我们仅仅使用一个温度小的假设, 目标在除美元之外的所有变量都固定的情况下, 目标可以优化为“ 复杂”, 产生一个运行时间 $ $( 美元) 。 此外, 美元 美元( 美元) 的运行时间是直径直的 美元( 美元) 。 当我们使用直径直径( 美元) 直径( 美元) 直径( ) 直径( 美元) ) 直径( ) 直方) 直方( ) 直方) 等( 或直方( 直方) 等方( ) 的( ) ( ) ) ) 的( ) ) ( ) ( ) ( ) ( ) ( ) ) 直) ( ) 直方) ( ) ( ) ( ) ( ) ) ) 直方) 根(美元) 的) 等方( 的) ( 的) 的) 的) ( 的) ( 我们方) ( 的) ( 的) ( 的) ( 的) ( 我们的) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ) ) ( ) ) ) ( ) ( ) ( ) ( ) ) ( ) ( ) ) ) ) ( ) ) ) ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ) ( ) ( </s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月23日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员