To alleviate the high annotation cost in LiDAR-based 3D object detection, active learning is a promising solution that learns to select only a small portion of unlabeled data to annotate, without compromising model performance. Our empirical study, however, suggests that mainstream uncertainty-based and diversity-based active learning policies are not effective when applied in the 3D detection task, as they fail to balance the trade-off between point cloud informativeness and box-level annotation costs. To overcome this limitation, we jointly investigate three novel criteria in our framework Crb for point cloud acquisition - label conciseness}, feature representativeness and geometric balance, which hierarchically filters out the point clouds of redundant 3D bounding box labels, latent features and geometric characteristics (e.g., point cloud density) from the unlabeled sample pool and greedily selects informative ones with fewer objects to annotate. Our theoretical analysis demonstrates that the proposed criteria align the marginal distributions of the selected subset and the prior distributions of the unseen test set, and minimizes the upper bound of the generalization error. To validate the effectiveness and applicability of Crb, we conduct extensive experiments on the two benchmark 3D object detection datasets of KITTI and Waymo and examine both one-stage (i.e., Second) and two-stage 3D detectors (i.e., Pv-rcnn). Experiments evidence that the proposed approach outperforms existing active learning strategies and achieves fully supervised performance requiring $1\%$ and $8\%$ annotations of bounding boxes and point clouds, respectively. Source code: https://github.com/Luoyadan/CRB-active-3Ddet.
翻译:为了降低基于 LiDAR 的 3D 3D 对象检测的高批注成本,积极学习是一个很有希望的解决方案,它学会在不损及模型性能的情况下,只选择一小部分未贴标签的数据进行批注,而不会影响模型性能。然而,我们的经验研究表明,主流基于不确定性和基于多样性的积极学习政策在应用到 3D 检测任务时并不有效,因为这些政策未能平衡点云信息度和箱级批注成本之间的取舍。为了克服这一限制,我们共同调查了我们框架Crb中的三个新标准,即点云获取的Crb(标签简洁性 ) 、地点代表性和几何平衡,这些标准在等级上从冗余的 3D 标注框标签、潜在特征和几何特性(例如点云密度) 中过滤出。我们从未贴标签的样本库中,贪婪地选择了信息性能与较少的值。我们的理论分析表明,拟议的标准将选定的子集和先前版本测试集的分布与先前的分布相协调,并最大限度地缩小了一般化对象/ 3D 的值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 和 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值