3D object detection is one of the most important tasks in autonomous driving and robotics. Our research focuses on tackling low efficiency issue of point-based methods on large-scale point clouds. Existing point-based methods adopt farthest point sampling (FPS) strategy for downsampling, which is computationally expensive in terms of inference time and memory consumption when the number of point cloud increases. In order to improve efficiency, we propose a novel Instance-Centroid Faster Point Sampling Module (IC-FPS) , which effectively replaces the first Set Abstraction (SA) layer that is extremely tedious. IC-FPS module is comprised of two methods, local feature diffusion based background point filter (LFDBF) and Centroid-Instance Sampling Strategy (CISS). LFDBF is constructed to exclude most invalid background points, while CISS substitutes FPS strategy by fast sampling centroids and instance points. IC-FPS module can be inserted to almost every point-based models. Extensive experiments on multiple public benchmarks have demonstrated the superiority of IC-FPS. On Waymo dataset, the proposed module significantly improves performance of baseline model and accelerates inference speed by 3.8 times. For the first time, real-time detection of point-based models in large-scale point cloud scenario is realized.
翻译:3D 物体检测是自动驾驶和机器人领域中最重要的任务之一。我们的研究重点是解决基于点的方法在大规模点云上效率低下的问题。现有的基于点的方法采用了最远点采样(FPS)策略进行降采样,当点云数量增加时,这种方法在推断时间和内存消耗方面计算量非常大。为了提高效率,我们提出了一种全新的实例重心更快的点采样模块(IC-FPS),它有效地替代了极其繁琐的第一次抽象层(SA)。IC-FPS 模块由两种方法构成,即基于局部特征扩散的背景点过滤器(LFDBF)和重心实例采样策略(CISS)。LFDBF 被构建用于排除大部分无效的背景点,而 CISS 则通过快速采样重心和实例点来代替 FPS 策略。IC-FPS 模块可以插入到几乎所有基于点的模型中。在多个公共基准测试上的广泛实验已经证明了 IC-FPS 的优越性。在 Waymo 数据集上,所提出的模块显著提高了基线模型的性能,并加速了推断速度 3.8 倍。首次实现了基于点的模型在大规模点云场景中的实时检测。