In few-shot unsupervised domain adaptation (FS-UDA), most existing methods followed the few-shot learning (FSL) methods to leverage the low-level local features (learned from conventional convolutional models, e.g., ResNet) for classification. However, the goal of FS-UDA and FSL are relevant yet distinct, since FS-UDA aims to classify the samples in target domain rather than source domain. We found that the local features are insufficient to FS-UDA, which could introduce noise or bias against classification, and not be used to effectively align the domains. To address the above issues, we aim to refine the local features to be more discriminative and relevant to classification. Thus, we propose a novel task-specific semantic feature learning method (TSECS) for FS-UDA. TSECS learns high-level semantic features for image-to-class similarity measurement. Based on the high-level features, we design a cross-domain self-training strategy to leverage the few labeled samples in source domain to build the classifier in target domain. In addition, we minimize the KL divergence of the high-level feature distributions between source and target domains to shorten the distance of the samples between the two domains. Extensive experiments on DomainNet show that the proposed method significantly outperforms SOTA methods in FS-UDA by a large margin (i.e., 10%).


翻译:在少数未受监督的域适应(FS-UDA)中,大多数现有方法都遵循了微小的学习方法(FSL)来利用低层次地方特征(从传统的革命模型(例如ResNet)中获取)进行分类,然而,FS-UDA和FSL的目标虽然相关,但又不同,因为FS-UDA的目的是将样本分类在目标域而不是源域。我们发现,FS-UDA的本地特征不足以满足FS-UDA的本地特征,因为FS-UDA可能会对分类产生噪音或偏见,而且不会被用于有效地对域进行统一。为了解决上述问题,我们力求改进当地特征,使之更具歧视性,与分类相关。因此,我们提议为FS-UDA提出一种新的特定任务语义特征学习方法(TCS),因为FS-UA的目标是将高层次的语系特征特征分类分为10个域域域域域,我们通过在高层次的域域域域间设计一种交叉的自我培训战略来利用少数标签样本在目标域内建立分类。此外,我们尽可能缩小了SFSFSWA的域域域域域域范围在高层次上分配。

6
下载
关闭预览

相关内容

【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
45+阅读 · 2022年7月10日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员