The discrete Wasserstein barycenter problem is a minimum-cost mass transport problem for a set of probability measures with finite support. In this paper, we show that finding a barycenter of sparse support is hard, even in dimension 2 and for only 3 measures. We prove this claim by showing that a special case of an intimately related decision problem SCMP -- does there exist a measure with a non-mass-splitting transport cost and support size below prescribed bounds? -- is NP-hard for all rational data. Our proof is based on a reduction from planar 3-dimensional matching and follows a strategy laid out by Spieksma and Woeginger (1996) for a reduction to planar, minimum circumference 3-dimensional matching. While we closely mirror the actual steps of their proof, the arguments themselves differ fundamentally due to the complex nature of the discrete barycenter problem. Containment of SCMP in NP will remain open. We prove that, for a given measure, sparsity and cost of an optimal transport to a set of measures can be verified in polynomial time in the size of a bit encoding of the measure. However, the encoding size of a barycenter may be exponential in the encoding size of the underlying measures.


翻译:离散的瓦森斯坦温温温热点问题是一套有有限支持的概率措施的最低成本大众运输问题。在本文中,我们表明,找到一个缺乏支持的热点是困难的,即使是在二维和仅三维措施中也是如此。我们通过表明一个密切相关的决定问题SCMP的特殊案例来证明这一说法 -- -- 是否存在一种措施,其运输成本和支持规模不分割,不超出规定的界限? -- -- 对所有合理数据来说,这种措施是硬的。我们的证据是以Spieksma和Wouginger(1996年)提出的战略为依据的,即从平面三维匹配减少三维相匹配,以降低平面支持的最小值三维匹配。虽然我们密切地反映其证据的实际步骤,但论点本身却因离散的热点问题的复杂性质而根本不同。将SCMP限制在NP中将仍然是开放的。我们证明,对于某一措施而言,最优化的运输成本是紧张的。在比小的时间里诺摩调,在标准中可以核查标准度的比数级标准大小。然而,标准的尺寸可能是核心的编码。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员