The discrete Wasserstein barycenter problem is a minimum-cost mass transport problem for a set of probability measures with finite support. In this paper, we show that finding a barycenter of sparse support is hard, even in dimension 2 and for only 3 measures. We prove this claim by showing that a special case of an intimately related decision problem SCMP -- does there exist a measure with a non-mass-splitting transport cost and support size below prescribed bounds? -- is NP-hard for all rational data. Our proof is based on a reduction from planar 3-dimensional matching and follows a strategy laid out by Spieksma and Woeginger (1996) for a reduction to planar, minimum circumference 3-dimensional matching. While we closely mirror the actual steps of their proof, the arguments themselves differ fundamentally due to the complex nature of the discrete barycenter problem. Containment of SCMP in NP will remain open. We prove that, for a given measure, sparsity and cost of an optimal transport to a set of measures can be verified in polynomial time in the size of a bit encoding of the measure. However, the encoding size of a barycenter may be exponential in the encoding size of the underlying measures.
翻译:离散的瓦森斯坦温温温热点问题是一套有有限支持的概率措施的最低成本大众运输问题。在本文中,我们表明,找到一个缺乏支持的热点是困难的,即使是在二维和仅三维措施中也是如此。我们通过表明一个密切相关的决定问题SCMP的特殊案例来证明这一说法 -- -- 是否存在一种措施,其运输成本和支持规模不分割,不超出规定的界限? -- -- 对所有合理数据来说,这种措施是硬的。我们的证据是以Spieksma和Wouginger(1996年)提出的战略为依据的,即从平面三维匹配减少三维相匹配,以降低平面支持的最小值三维匹配。虽然我们密切地反映其证据的实际步骤,但论点本身却因离散的热点问题的复杂性质而根本不同。将SCMP限制在NP中将仍然是开放的。我们证明,对于某一措施而言,最优化的运输成本是紧张的。在比小的时间里诺摩调,在标准中可以核查标准度的比数级标准大小。然而,标准的尺寸可能是核心的编码。