Evaluating the similarity of non-rigid shapes with significant partiality is a fundamental task in numerous computer vision applications. Here, we propose a novel axiomatic method to match similar regions across shapes. Matching similar regions is formulated as the alignment of the spectra of operators closely related to the Laplace-Beltrami operator (LBO). The main novelty of the proposed approach is the consideration of differential operators defined on a manifold with multiple metrics. The choice of a metric relates to fundamental shape properties while considering the same manifold under different metrics can thus be viewed as analyzing the underlying manifold from different perspectives. Specifically, we examine the scale-invariant metric and the corresponding scale-invariant Laplace-Beltrami operator (SI-LBO) along with the regular metric and the regular LBO. We demonstrate that the scale-invariant metric emphasizes the locations of important semantic features in articulated shapes. A truncated spectrum of the SI-LBO consequently better captures locally curved regions and complements the global information encapsulated in the truncated spectrum of the regular LBO. We show that matching these dual spectra outperforms competing axiomatic frameworks when tested on standard benchmarks. We introduced a new dataset and compare the proposed method with the state-of-the-art learning based approach in a cross-database configuration. Specifically, we show that, when trained on one data set and tested on another, the proposed axiomatic approach which does not involve training, outperforms the deep learning alternative.
翻译:评估非硬体形状的相似性和显著偏差性是许多计算机视觉应用中的一项根本任务。 在这里, 我们提出一种新的非逻辑方法, 以匹配形状相似的区域。 类似区域被设计为与Laplace- Beltrami 操作员( LBO) 密切相关的操作员光谱的匹配。 拟议方法的主要新颖之处是考虑在多维度的方位上界定的不同的操作员。 选择一个指标与基本形状属性有关, 同时考虑到不同度量度下相同的方块, 因而可以被视为从不同角度分析基本成份。 具体地说, 我们检查了规模差异度- 异性度指标和相应的规模- 变异性 Laplace- Beltrami 操作员( SI- LBOO) 和常规的 LBOO( LBO) 密切关联的操作员光谱。 我们证明, 规模变异性度衡量标准值强调以多维度的方位数特征的位置。 SI- LBO 选择的宽度范围, 从而更好地捕捉摸测当地曲线区域, 和补充常规 LBOBO 的解频谱中全球信息包罗定的替代范围 。 我们用一个测试的双向式的公式, 显示一个标准, 测试了一种格式, 我们用一个双光谱式的双向一个测试了一种标准,,, 显示一种双向式的双向式 。