Many important resource allocation problems involve the combinatorial assignment of items, e.g., auctions or course allocation. Because the bundle space grows exponentially in the number of items, preference elicitation is a key challenge in these domains. Recently, researchers have proposed ML-based mechanisms that outperform traditional mechanisms while reducing preference elicitation costs for agents. However, one major shortcoming of the ML algorithms that were used is their disregard of important prior knowledge about agents' preferences. To address this, we introduce monotone-value neural networks (MVNNs), which are designed to capture combinatorial valuations, while enforcing monotonicity and normality. On a technical level, we prove that our MVNNs are universal in the class of monotone and normalized value functions, and we provide a mixed-integer linear program (MILP) formulation to make solving MVNN-based winner determination problems (WDPs) practically feasible. We evaluate our MVNNs experimentally in spectrum auction domains. Our results show that MVNNs improve the prediction performance, they yield state-of-the-art allocative efficiency in the auction, and they also reduce the run-time of the WDPs. Our code is available on GitHub: https://github.com/marketdesignresearch/MVNN.
翻译:许多重要的资源分配问题涉及物品的组合分配,例如拍卖或课程分配。由于捆绑的空间在项目数量上成倍增长,因此,优惠引领是这些领域的一个关键挑战。最近,研究人员提出了以ML为基础的机制,这些机制超越了传统机制,同时降低了代理商的优惠引价。然而,使用ML算法的一个主要缺点是,它们忽视了以前对代理人偏好的重要知识。为了解决这个问题,我们引入了单体价值神经网络(MVNN),这些网络旨在获取组合评价,同时执行单体性和正常性。在技术层面,我们证明我们的MVNNN在单体和常规价值功能类别中是普遍的,我们提供了一个混合的线性程序(MILP),使基于MVNN的赢家确定问题(WDPs)切实可行。我们从频谱拍卖领域对我们的MVNPNS进行实验性评价。我们的结果表明,MVNNNS改进了预测性业绩,它们产生州-艺术全方位的WOPDD。我们在拍卖中可以找到的运行规则。MVMV/NVD。