We provide an Information-Geometric formulation of Classical Mechanics on the Riemannian manifold of probability distributions, which is an affine manifold endowed with a dually-flat connection. In a non-parametric formalism, we consider the full set of positive probability functions on a finite sample space, and we provide a specific expression for the tangent and cotangent spaces over the statistical manifold, in terms of a Hilbert bundle structure that we call the Statistical Bundle. In this setting, we compute velocities and accelerations of a one-dimensional statistical model using the canonical dual pair of parallel transports and define a coherent formalism for Lagrangian and Hamiltonian mechanics on the bundle. Finally, in a series of examples, we show how our formalism provides a consistent framework for accelerated natural gradient dynamics on the probability simplex, paving the way for direct applications in optimization, game theory and neural networks.
翻译:我们在Riemannian 概率分布元件上提供了经典机械学的信息-地质学配方,这是具有双倍膨胀连接的线形元件。在非参数形式主义中,我们考虑了有限样本空间的全套正概率功能,我们用我们称之为统计捆绑的Hilbert捆绑结构为统计元件的正切和相切空间提供了具体的表达方式。在这个环境中,我们用平行运输的金字塔双对计算单维统计模型的速度和加速度,并为捆绑的拉格朗江和汉密尔顿机械师界定了一致的形式主义。最后,我们用一系列实例展示了我们的形式主义如何为概率简单x的加速自然梯度动态提供了一个一致的框架,为在优化、游戏理论和神经网络中直接应用铺平了道路。