Multitask Gaussian processes (MTGP) are the Gaussian process (GP) framework's solution for multioutput regression problems in which the $T$ elements of the regressors cannot be considered conditionally independent given the observations. Standard MTGP models assume that there exist both a multitask covariance matrix as a function of an intertask matrix, and a noise covariance matrix. These matrices need to be approximated by a low rank simplification of order $P$ in order to reduce the number of parameters to be learnt from $T^2$ to $TP$. Here we introduce a novel approach that simplifies the multitask learning by reducing it to a set of conditioned univariate GPs without the need for any low rank approximations, therefore completely eliminating the requirement to select an adequate value for hyperparameter $P$. At the same time, by extending this approach with both a hierarchical and an approximate model, the proposed extensions are capable of recovering the multitask covariance and noise matrices after learning only $2T$ parameters, avoiding the validation of any model hyperparameter and reducing the overall complexity of the model as well as the risk of overfitting. Experimental results over synthetic and real problems confirm the advantages of this inference approach in its ability to accurately recover the original noise and signal matrices, as well as the achieved performance improvement in comparison to other state of art MTGP approaches. We have also integrated the model with standard GP toolboxes, showing that it is computationally competitive with state of the art options.


翻译:多任务高斯进程(MTGP)是高斯进程(GP)框架(GP)针对多产出回归问题的解决方案,根据观察结果,不能将递减者的$T元素视为有条件的独立。标准MTGP模型假定,存在一个多任务共变矩阵,作为跨任务矩阵的函数,并有一个噪声共变矩阵。这些矩阵需要以低级别简化顺序来近似于美元P$的排序,以便把从多产出回归问题中学习的参数数量从2美元减少到1美元TP美元。这里,我们引入了一种新的方法,通过将其简化为一套有条件的单任务共变后学习要素来简化多任务学习内容,而不需要任何低级别的近似,从而完全消除了为超参数矩阵选择适当价值的要求。同时,通过将这一方法扩大等级和近似模式,在只学习2T$参数之后,能够恢复多任务和噪声调矩阵的参数数量。 避免将多任务组合学习简化多任务后,将多任务学习简化的多任务学习内容简化的元素,将它简化成一套有条件的学习课程,将其简化成一套有条件的全套单,从而精确地验证,并降低模型的精确的精确的计算方法,作为模型的模型的精确的精确的精确的精确的精确的精确的精确的计算方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员