Alignment between non-rigid stretchable structures is one of the most challenging tasks in computer vision, as the invariant properties are hard to define, and there is no labeled data for real datasets. We present unsupervised neural network architecture based upon the spectral domain of scale-invariant geometry. We build on top of the functional maps architecture, but show that learning local features, as done until now, is not enough once the isometry assumption breaks. We demonstrate the use of multiple scale-invariant geometries for solving this problem. Our method is agnostic to local-scale deformations and shows superior performance for matching shapes from different domains when compared to existing spectral state-of-the-art solutions.
翻译:非硬性可伸缩结构之间的对齐是计算机视觉中最具挑战性的任务之一,因为变量属性难以定义,而且没有真实数据集的标签数据。 我们展示了基于比例变化的几何光谱域的不受监督的神经网络结构。 我们建建在功能地图结构的顶部, 但显示,在异度假设断裂后学习本地特征是不够的。 我们展示了多种比例变化的几何模型用于解决这一问题。 我们的方法对局部规模变形具有不可知性, 并显示与现有光谱状态解决方案相比, 匹配不同区域形状的优异性 。