Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
翻译:在许多关键领域中,现实生活中的决策工具以排序结果为基础。随着对算法公平的认识不断提高,最近的工作提出了排名公平性的措施。其中许多定义考虑不同“受保护群体”在最高至一美元的排名项目中代表任何合理的美元。鉴于受保护群体,确认算法公平性是一项简单的任务。然而,这些群体的定义可能事先不为人知。在本文件中,我们研究了在最高至一百万美元排名项目中发现有偏向代表性的群体的问题,消除了预先确定受保护群体的必要性。这类群体的数量可能是指数化的,使问题变得难以解决。我们提出了两种不同的公平措施的有效搜索算法:全球代表制和比例代表制。然后我们提出一种方法来解释利用Shapley价值的概念在群体代表中存在的偏差。我们最后进行了一项实验研究,显示了我们的方法的可扩展性,并展示了拟议的算法的有用性。