Diffusion models (DMs) have recently emerged as a promising method in image synthesis. However, to date, only little attention has been paid to the detection of DM-generated images, which is critical to prevent adverse impacts on our society. In this work, we address this pressing challenge from two different angles: First, we evaluate the performance of state-of-the-art detectors, which are very effective against images generated by generative adversarial networks (GANs), on a variety of DMs. Second, we analyze DM-generated images in the frequency domain and study different factors that influence the spectral properties of these images. Most importantly, we demonstrate that GANs and DMs produce images with different characteristics, which requires adaptation of existing classifiers to ensure reliable detection. We believe this work provides the foundation and starting point for further research to detect DM deepfakes effectively.
翻译:传播模型(DMs)最近成为图像合成的一个很有希望的方法,然而,迄今为止,很少注意探测DM产生的图像,而DM产生的图像对于防止对我们的社会产生不利影响至关重要。在这项工作中,我们从两个不同的角度应对这一紧迫挑战:第一,我们评估最先进的探测器的性能,这些探测器对各种DMs的基因对抗网络产生的图像非常有效。第二,我们分析频率域内DM产生的图像,研究影响这些图像光谱特性的各种因素。最重要的是,我们证明GANs和DMs制作的图像具有不同特性,需要对现有分类器进行调整,以确保可靠的检测。我们认为,这项工作为进一步研究有效检测DM深假提供了基础和起点。</s>