Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis. Code is available at: https://github.com/microsoft/robustlearn.
翻译:时间序列分类是现实世界中的一个重要问题。 由于其非静止特性, 分布会随着时间的变化而变化, 因此仍然难以建立推广到无形分布的模型。 在本文中, 我们提议从分布角度来看待时间序列分类问题。 我们主张, 时间序列的复杂性是未知潜在分布在其中的特性。 为此, 我们提议DIVERSIFY 学习时间序列分类的普遍表现。 DIVERSIFFY 是一个迭接过程: 它首先通过对抗性培训获得最坏的分布假设, 然后与获得的子域的分布相匹配。 我们还提出了一些理论见解。 我们进行了动作识别、 语音指令识别、 可磨损的压力和影响检测以及传感器人类活动识别实验, 在不同环境中共有七套数据集。 结果显示, DIVERSIFY 明显地超越了其他基线, 并有效地通过定性和定量分析来描述潜在分布。 代码可以在以下网址查阅 : https://github.com/microbustrestrarn/robustrarn。</s>