In many real-world situations, data is distributed across multiple self-interested agents. These agents can collaborate to build a machine learning model based on data from multiple agents, potentially reducing the error each experiences. However, sharing models in this way raises questions of fairness: to what extent can the error experienced by one agent be significantly lower than the error experienced by another agent in the same coalition? In this work, we consider two notions of fairness that each may be appropriate in different circumstances: "egalitarian fairness" (which aims to bound how dissimilar error rates can be) and "proportional fairness" (which aims to reward players for contributing more data). We similarly consider two common methods of model aggregation, one where a single model is created for all agents (uniform), and one where an individualized model is created for each agent. For egalitarian fairness, we obtain a tight multiplicative bound on how widely error rates can diverge between agents collaborating (which holds for both aggregation methods). For proportional fairness, we show that the individualized aggregation method always gives a small player error that is upper bounded by proportionality. For uniform aggregation, we show that this upper bound is guaranteed for any individually rational coalition (where no player wishes to leave to do local learning).


翻译:在许多现实世界中, 数据分布于多个自我感兴趣的代理商之间。 这些代理商可以合作建立一个基于多个代理商的数据的机器学习模型, 有可能减少每个经验的错误。 但是, 以这种方式共享模型会引起公平问题: 一个代理商经历的错误在多大程度上会大大低于同一联盟中另一个代理商所经历的错误? 在这项工作中, 我们考虑两种公平概念, 每一种可能在不同情况下都适合两种公平概念 : “ 利他性公平 ” ( 目的是限制不同错误率如何不同 ) 和 “ 相称性公平 ” ( 目的是奖励行为者提供更多数据 ) 。 我们同样考虑两种共同的模型聚合方法, 一种是为所有代理商创建单一模型( 统一模式 ), 另一种是为每个代理商创建个化模型。 为了平等性公平, 我们得到了一个紧密的重复性约束, 在于代理商之间合作( 两种组合方法都支持两种方法 ) 。 关于比例性公平性, 我们表明个化合并方法总是给一个小的玩家错误, 最高受相称性约束 。 关于统一合并, 我们证明这个上界限是保证任何个体理性联盟( 学习玩家) 。</s>

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员