Responsibility attribution is a key concept of accountable multi-agent decision making. Given a sequence of actions, responsibility attribution mechanisms quantify the impact of each participating agent to the final outcome. One such popular mechanism is based on actual causality, and it assigns (causal) responsibility based on the actions that were found to be pivotal for the considered outcome. However, the inherent problem of pinpointing actual causes and consequently determining the exact responsibility assignment has shown to be computationally intractable. In this paper, we aim to provide a practical algorithmic solution to the problem of responsibility attribution under a computational budget. We first formalize the problem in the framework of Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) augmented by a specific class of Structural Causal Models (SCMs). Under this framework, we introduce a Monte Carlo Tree Search (MCTS) type of method which efficiently approximates the agents' degrees of responsibility. This method utilizes the structure of a novel search tree and a pruning technique, both tailored to the problem of responsibility attribution. Other novel components of our method are (a) a child selection policy based on linear scalarization and (b) a backpropagation procedure that accounts for a minimality condition that is typically used to define actual causality. We experimentally evaluate the efficacy of our algorithm through a simulation-based test-bed, which includes three team-based card games.


翻译:责任归属是负责任的多代理人决策的关键概念。根据一系列行动,责任归属机制将每个参与机构的影响量化到最终结果中。这种流行机制以实际因果关系为基础,根据被认为对审议结果至关重要的行动分配(因果)责任。然而,查明实际原因并进而确定确切责任分配的固有问题在计算上难以解决。在本文件中,我们的目标是在计算预算下为责任归属问题提供一个实用的算法解决办法。我们的方法的其他新组成部分是:(a) 以直线可视马尔科夫决定程序(Dec-POMDPs)为框架,通过特定类别的结构性因果关系模型(SCMs)为补充,将问题正式化。在这个框架内,我们采用了一种能有效接近代理人责任程度的方法。这种方法利用了新颖的搜索树结构,以及一种与责任归属问题相适应的裁剪裁技术。我们方法的其他新组成部分是:(a) 儿童选择政策,以直线性可视部分可观测马可视的马尔科夫决定进程(Dec-POMDPs)为框架,并用一个最起码的测试性模型来界定我们所采用的程序。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
13+阅读 · 2021年3月3日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员