In this paper, we present PARTICUL, a novel algorithm for unsupervised learning of part detectors from datasets used in fine-grained recognition. It exploits the macro-similarities of all images in the training set in order to mine for recurring patterns in the feature space of a pre-trained convolutional neural network. We propose new objective functions enforcing the locality and unicity of the detected parts. Additionally, we embed our detectors with a confidence measure based on correlation scores, allowing the system to estimate the visibility of each part. We apply our method on two public fine-grained datasets (Caltech-UCSD Bird 200 and Stanford Cars) and show that our detectors can consistently highlight parts of the object while providing a good measure of the confidence in their prediction. We also demonstrate that these detectors can be directly used to build part-based fine-grained classifiers that provide a good compromise between the transparency of prototype-based approaches and the performance of non-interpretable methods.


翻译:在本文中,我们展示了 " partICUL ",这是一个在不受监督的情况下从微小识别中所使用的数据集中学习部分探测器的新算法,它利用了成套培训中所有图像的宏观差异性,以便在经过预先训练的神经神经网络的特征空间中埋设重复模式;我们提出新的客观功能,以测量所探测到的部件的位置和独特性;此外,我们根据相关分数将我们的探测器嵌入一个信任度度,使系统能够估计每个部件的可见度;我们将我们的方法应用于两个公共精密数据集(Caltech-UCSD Bird 200和斯坦福汽车),并表明我们的探测器可以一贯地突出目标的部分内容,同时对它们的预测提供良好的信任度度;我们还表明,这些探测器可以直接用来建立部分基于精细的分类器,在原型方法的透明度与非解释方法的性能之间提供良好的妥协。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月15日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员