Despite years of effort, the quantum machine learning community has only been able to show quantum learning advantages for certain contrived cryptography-inspired datasets in the case of classical data. In this note, we discuss the challenges of finding learning problems that quantum learning algorithms can learn much faster than any classical learning algorithm, and we study how to identify such learning problems. Specifically, we reflect on the main concepts in computational learning theory pertaining to this question, and we discuss how subtle changes in definitions can mean conceptually significantly different tasks, which can either lead to a separation or no separation at all. Moreover, we study existing learning problems with a provable quantum speedup to distill sets of more general and sufficient conditions (i.e., ``checklists'') for a learning problem to exhibit a separation between classical and quantum learners. These checklists are intended to streamline one's approach to proving quantum speedups for learning problems, or to elucidate bottlenecks. Finally, to illustrate its application, we analyze examples of potential separations (i.e., when the learning problem is build from computational separations, or when the data comes from a quantum experiment) through the lens of our approach.


翻译:尽管经过多年的努力,量子机器学习社区只能表现出某些古典数据中由加密法启发的加密数据集的量子学习优势。在本说明中,我们讨论了寻找学习问题的挑战,量子学习算法比任何古典学习算法学得快得多,我们研究如何找出这种学习问题。具体地说,我们思考与这一问题有关的计算学理论中的主要概念,我们讨论定义的微妙变化如何在概念上意味着显著不同的任务,这可能导致分离或根本没有分离。此外,我们研究现有的学习问题,通过可辨别的量子加速来蒸馏一系列更一般和充分的条件(即“检查列表”的学习问题,以显示古典和量子学习者之间的分离。这些核对表旨在精简一种方法来证明学习问题的量子加速率,或澄清瓶颈。最后,为了说明其应用情况,我们分析了潜在分离的例子(例如,当学习问题从计算分解,或数据来自量子实验时)。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
11+阅读 · 2020年12月2日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员