The network reconstruction task aims to estimate a complex system's structure from various data sources such as time series, snapshots, or interaction counts. Recent work has examined this problem in networks whose relationships involve precisely two entities-the pairwise case. Here we investigate the general problem of reconstructing a network in which higher-order interactions are also present. We study a minimal example of this problem, focusing on the case of hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and indirectly. We derive a Metropolis-Hastings-within-Gibbs algorithm for this model and use the algorithms to highlight the unique challenges that come with estimating higher-order models. We show that this approach tends to reconstruct empirical and synthetic networks more accurately than an equivalent graph model without higher-order interactions.
翻译:网络重建任务旨在从时间序列、快照或互动计数等各种数据来源来估计一个复杂的系统结构。 最近的工作在网络中研究了这一问题,其关系恰恰涉及两个实体,即对等案件。 我们在这里调查重建一个也有较高层次相互作用的网络的一般问题。 我们研究这一问题的一个最微小的例子,侧重于高原与双对互动和三重脊椎互动的不完善和间接测量案例。 我们为这一模型制定了大都会-哈斯廷斯-内基布斯算法,并利用算法来突出在估计较高层次模型方面出现的独特挑战。 我们表明,这种方法往往比不进行更高层次互动的等同图表模型更准确地重建经验网络和合成网络。