Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage large unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.


翻译:近些年来,由于保证有效利用大量未贴标签的数据,联合嵌入式自我强化学习(JE-SSL)取得了迅速的发展。JE-SSL方法的开发主要是由于利用庞大的计算资源,寻求不断增长的下游分类缩略图,并通常基于从亲近的JE-SSL方法中继承来的洞察力和直觉。这不自觉地导致许多先入为主的想法,例如,SimCLR需要非常大的小批量的小批量才能产生有竞争力的适应性;需要强大的和计算上缓慢的数据增强。在这项工作中,我们挫败了一些这种错误的先入为主的想法,希望释放JE-SSL的全部潜力,而没有不必要的限制。事实上,当仔细评估不同下游任务的业绩,适当优化方法的超度度度量度时,我们往往 -- 如果不是总是这样 -- 发现这些广泛的错误观念不会持久存在。例如,我们可能训练SimCLRR来学习有用的表述,同时利用单一的图像,将JCLRRM的图像作为正化的图像,让我们能够将Squal-GRA的图像引入一个正面的图像升级的图像,作为SGRA。例如。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2020年12月2日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2020年12月2日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员