Few-shot semantic segmentation aims to segment the target objects in query under the condition of a few annotated support images. Most previous works strive to mine more effective category information from the support to match with the corresponding objects in query. However, they all ignored the category information gap between query and support images. If the objects in them show large intra-class diversity, forcibly migrating the category information from the support to the query is ineffective. To solve this problem, we are the first to introduce an intermediate prototype for mining both deterministic category information from the support and adaptive category knowledge from the query. Specifically, we design an Intermediate Prototype Mining Transformer (IPMT) to learn the prototype in an iterative way. In each IPMT layer, we propagate the object information in both support and query features to the prototype and then use it to activate the query feature map. By conducting this process iteratively, both the intermediate prototype and the query feature can be progressively improved. At last, the final query feature is used to yield precise segmentation prediction. Extensive experiments on both PASCAL-5i and COCO-20i datasets clearly verify the effectiveness of our IPMT and show that it outperforms previous state-of-the-art methods by a large margin. Code is available at https://github.com/LIUYUANWEI98/IPMT
翻译:少发的语义分解, 目的是在几个附加注释的支持图像的条件下分割查询中的目标对象。 大多数先前的工作都努力从支持中挖掘更有效的类别信息, 以便与查询中的相应对象匹配。 但是, 它们都忽略了查询和支持图像之间的类别信息差距。 如果其中的对象显示的类别多样性很大, 将类别信息从支持中强制迁移到查询是无效的。 为了解决这个问题, 我们首先引入一个中间样本, 用于开采来自查询中支持和适应类别知识的确定类别信息。 具体地说, 我们设计了一个中间模型型采矿变异器(IPMT), 以便以迭接方式学习原型。 在每一个 IPMT 层, 我们以支持和查询特性向原型传播对象信息, 然后用它来激活查询特征图。 通过反复操作, 中间原型和查询特性可以逐步改进。 最后的查询特性被用来得出精确的分解预测。 在 PASCAL-5i 和 CO-20i 数据集中进行广泛的实验, 以迭接合方式学习原型的原型。 我们的IPMT 和查询图/ ASMALI 之前所用的方法显示它在大基 。