Transformer模型(基于论文《Attention is All You Need》)遵循与标准序列模型相同的一般模式,即从一个序列到另一个序列的注意力模型。

输入语句通过N个编码器层传递,该层为序列中的每个单词/令牌生成输出。解码器关注编码器的输出和它自己的输入(自我注意)来预测下一个单词。

实践证明,该Transformer模型在满足并行性的前提下,对许多顺序-顺序问题具有较好的求解质量。

在这里,我们要做的情感分析,不是顺序到顺序的问题。所以,只使用Transformer编码器。

References Attention Is All You Need

SEQUENCE-TO-SEQUENCE MODELING WITH NN.TRANSFORMER AND TORCHTEXT

Transformer model for language understanding

成为VIP会员查看完整内容
116

相关内容

Transformer是谷歌发表的论文《Attention Is All You Need》提出一种完全基于Attention的翻译架构

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
基于多头注意力胶囊网络的文本分类模型
专知会员服务
77+阅读 · 2020年5月24日
专知会员服务
44+阅读 · 2020年3月6日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
57+阅读 · 2020年1月3日
BERT进展2019四篇必读论文
专知会员服务
67+阅读 · 2020年1月2日
深度学习的下一步:Transformer和注意力机制
云头条
56+阅读 · 2019年9月14日
Github项目推荐 | PyTorch文本分类教程
AI研习社
7+阅读 · 2019年6月7日
一文读懂深度学习文本分类方法
AINLP
15+阅读 · 2019年6月6日
百闻不如一码!手把手教你用Python搭一个Transformer
大数据文摘
18+阅读 · 2019年4月22日
最新论文解读 | 基于预训练自然语言生成的文本摘要方法
微软研究院AI头条
57+阅读 · 2019年3月19日
详解谷歌最强NLP模型BERT(理论+实战)
AI100
11+阅读 · 2019年1月18日
Arxiv
6+阅读 · 2020年4月14日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
VIP会员
相关论文
Arxiv
6+阅读 · 2020年4月14日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
微信扫码咨询专知VIP会员