Previous top-performing methods for 3D instance segmentation often maintain inter-task dependencies and the tendency towards a lack of robustness. Besides, inevitable variations of different datasets make these methods become particularly sensitive to hyper-parameter values and manifest poor generalization capability. In this paper, we address the aforementioned challenges by proposing a novel query-based method, termed as 3D-QueryIS, which is detector-free, semantic segmentation-free, and cluster-free. Specifically, we propose to generate representative points in an implicit manner, and use them together with the initial queries to generate the informative instance queries. Then, the class and binary instance mask predictions can be produced by simply applying MLP layers on top of the instance queries and the extracted point cloud embeddings. Thus, our 3D-QueryIS is free from the accumulated errors caused by the inter-task dependencies. Extensive experiments on multiple benchmark datasets demonstrate the effectiveness and efficiency of our proposed 3D-QueryIS method.
翻译:先前的3D 例分解最高性能方法往往保持任务间依赖性和缺乏稳健性的趋势。 此外,不同数据集的不可避免的变化使得这些方法对超参数值特别敏感,并且显示一般化能力差。 在本文中,我们通过提出一种新的基于查询的方法(称为3D-QueryIS)来应对上述挑战,该方法称为3D-QueryIS,是无探测器、无语区分解和无集群的。具体地说,我们提议以隐含的方式生成代表点,并与初始查询一起生成信息性实例查询。然后,类和二元实例掩码预测可以简单地通过在例查询和抽取点嵌入云中应用 MLP 层来生成。因此,我们的3D- QueryIS 不受任务间依赖性造成的累积错误的影响。对多个基准数据集进行的广泛实验显示了我们提议的3D- QueryIS 方法的有效性和效率。