Robotic taxonomies have appeared as high-level hierarchical abstractions that classify how humans move and interact with their environment. They have proven useful to analyse grasps, manipulation skills, and whole-body support poses. Despite the efforts devoted to design their hierarchy and underlying categories, their use in application fields remains scarce. This may be attributed to the lack of computational models that fill the gap between the discrete hierarchical structure of the taxonomy and the high-dimensional heterogeneous data associated to its categories. To overcome this problem, we propose to model taxonomy data via hyperbolic embeddings that capture the associated hierarchical structure. To do so, we formulate a Gaussian process hyperbolic latent variable model and enforce the taxonomy structure through graph-based priors on the latent space and distance-preserving back constraints. We test our model on the whole-body support pose taxonomy to learn hyperbolic embeddings that comply with the original graph structure. We show that our model properly encodes unseen poses from existing or new taxonomy categories, it can be used to generate trajectories between the embeddings, and it outperforms its Euclidean counterparts.
翻译:机器人分类法似乎是一种高层次的等级抽象学,对人类如何移动和与环境互动进行分类。 事实证明,它们对于分析掌握、 操纵技能和整个身体支持构成的作用是有用的。 尽管努力设计其等级和基本类别,但在应用领域仍然很少使用。 这可能是由于缺乏计算模型来填补分类学离散等级结构与与其类别相关的高维多元数据之间的差距。 为了克服这一问题, 我们提议通过超单嵌入来模拟分类学数据, 从而捕捉相关的等级结构。 为了做到这一点, 我们开发了一个高单过程超偏潜潜伏变量模型, 并通过基于图表的潜藏空间前缀来强制实施分类学结构, 并保留后退限制。 我们测试我们的全体支持模型, 以分类法来学习符合原始图表结构的超偏执嵌入。 我们显示, 我们的模型正确编码了从现有或新的分类分类分类分类分类类别中采集的看不见的成分, 可以用来在嵌入层之间产生轨迹, 并超越其 Eclodides 。