Self-supervised learning for depth estimation uses geometry in image sequences for supervision and shows promising results. Like many computer vision tasks, depth network performance is determined by the capability to learn accurate spatial and semantic representations from images. Therefore, it is natural to exploit semantic segmentation networks for depth estimation. In this work, based on a well-developed semantic segmentation network HRNet, we propose a novel depth estimation network DIFFNet, which can make use of semantic information in down and upsampling procedures. By applying feature fusion and an attention mechanism, our proposed method outperforms the state-of-the-art monocular depth estimation methods on the KITTI benchmark. Our method also demonstrates greater potential on higher resolution training data. We propose an additional extended evaluation strategy by establishing a test set of challenging cases, empirically derived from the standard benchmark.
翻译:自我监督的深度估算学习在图像序列中使用几何测量方法进行监管,并显示有希望的结果。 与许多计算机的视觉任务一样,深度网络的性能取决于从图像中学习准确的空间和语义表达方式的能力。 因此,利用语义分解网络进行深度估算是自然的。 在这项工作中,基于一个完善的语义分解网络HRNet,我们建议建立一个新的深度估算网络DIFFNet, 该网络可以在下层和上层程序中使用语义信息。 通过应用特征聚合和关注机制,我们提出的方法超过了KITTI基准上最先进的单体深度估算方法。我们的方法还展示了更高分辨率培训数据的更大潜力。我们建议通过建立一套从标准基准中经验得出的具有挑战性的案例测试集来增加评估战略。