Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. This paper targets to address this challenge by studying a novel intra-inter camera similarity for pseudo-label generation. We decompose the sample similarity computation into two stage, i.e., the intra-camera and inter-camera computations, respectively. The intra-camera computation directly leverages the CNN features for similarity computation within each camera. Pseudo-labels generated on different cameras train the re-id model in a multi-branch network. The second stage considers the classification scores of each sample on different cameras as a new feature vector. This new feature effectively alleviates the distribution discrepancy among cameras and generates more reliable pseudo-labels. We hence train our re-id model in two stages with intra-camera and inter-camera pseudo-labels, respectively. This simple intra-inter camera similarity produces surprisingly good performance on multiple datasets, e.g., achieves rank-1 accuracy of 89.5% on the Market1501 dataset, outperforming the recent unsupervised works by 9+%, and is comparable with the latest transfer learning works that leverage extra annotations.


翻译:大部分无人监督的人重新识别( Re-ID) 的作品都通过测量特征的相似性来制作假标签,方法是测量特征的相似性,而不考虑相机之间的分布差异,从而导致跨照相机标签计算中的准确性降低。 本文的目标是通过研究一个新型的模拟合成标签生成的相机内部相似性来应对这一挑战。 我们分别将样本相似性计算分解为两个阶段, 即相机内部和相机之间的计算。 相机内部计算直接利用CNN的特征来计算每部相机内的相似性。 在不同相机上生成的Pseedo标签在多管网络中培训了再定位模型。 第二阶段将不同相机上每个样本的分类分数视为一个新的特性矢量。 这个新的特性有效地缓解了相机之间的分布差异,并生成了更可靠的伪标签。 我们因此将我们的再定位模型分两个阶段分别用相机内部和相机之间的伪标签来分别进行。 这种简单的内部相近相相机在多个数据集上产生出令人惊讶的好的业绩, 例如, 在一个多处网络中, 实现不同相机的重置模型的分类分数分数分数分数分数分数分数,, 。 最新的分数在89.5 市场上, 最新的分级和超级 的分级 的分级 的分级 。

3
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员