In recent years, advanced research has focused on the direct learning and analysis of remote sensing images using natural language processing (NLP) techniques. The ability to accurately describe changes occurring in multi-temporal remote sensing images is becoming increasingly important for geospatial understanding and land planning. Unlike natural image change captioning tasks, remote sensing change captioning aims to capture the most significant changes, irrespective of various influential factors such as illumination, seasonal effects, and complex land covers. In this study, we highlight the significance of accurately describing changes in remote sensing images and present a comparison of the change captioning task for natural and synthetic images and remote sensing images. To address the challenge of generating accurate captions, we propose an attentive changes-to-captions network, called Chg2Cap for short, for bi-temporal remote sensing images. The network comprises three main components: 1) a Siamese CNN-based feature extractor to collect high-level representations for each image pair; 2) an attentive decoder that includes a hierarchical self-attention block to locate change-related features and a residual block to generate the image embedding; and 3) a transformer-based caption generator to decode the relationship between the image embedding and the word embedding into a description. The proposed Chg2Cap network is evaluated on two representative remote sensing datasets, and a comprehensive experimental analysis is provided. The code and pre-trained models will be available online at https://github.com/ShizhenChang/Chg2Cap.
翻译:近年来,先进的研究集中在使用自然语言处理(NLP)技术直接学习和分析遥感图像。准确描述多时相遥感图像中发生的变化能力越来越重要,用于地理空间理解和土地规划。与自然图像变化字幕任务不同,遥感图像变化字幕旨在捕捉最显著的变化,而不考虑各种影响因素,如照明、季节效应和复杂的土地覆盖等。本研究强调准确描述遥感图像中的变化的重要性,并对自然和合成图像以及遥感图像的变化字幕任务进行比较。为了解决生成准确字幕的挑战,我们提出了一种用于两个时间点的遥感图像的注意力变化字幕网络,称为Chg2Cap。该网络包括三个主要组件:1)一个基于Siamese CNN的特征提取器,用于收集每个图像对的高级表示;2)一个注意解码器,包括一个分层自我注意块来定位与变化相关的特征和一个残差块以生成图像嵌入;以及3)一个基于变形器的字幕生成器,将图像嵌入和字嵌入之间的关系解码为描述。我们在两个代表性的遥感数据集上评估了提出的Chg2Cap网络,并提供了全面的实验分析。代码和预训练模型将在https://github.com/ShizhenChang/Chg2Cap上提供。