Brain-computer interface (BCI) builds a bridge between human brain and external devices by recording brain signals and translating them into commands for devices to perform the user's imagined action. The core of the BCI system is the classifier that labels the input signals as the user's imagined action. The classifiers that directly classify covariance matrices using Riemannian geometry are widely used not only in BCI domain but also in a variety of fields including neuroscience, remote sensing, biomedical imaging, etc. However, the existing Affine-Invariant Riemannian-based methods treat covariance matrices as positive definite while they are indeed positive semi-definite especially for high dimensional data. Besides, the Affine-Invariant Riemannian-based barycenter estimation algorithms become time consuming, not robust, and have convergence issues when the dimension and number of covariance matrices become large. To address these challenges, in this paper, we establish the mathematical foundation for Bures-Wasserstein distance and propose new algorithms to estimate the barycenter of positive semi-definite matrices efficiently and robustly. Both theoretical and computational aspects of Bures-Wasserstein distance and barycenter estimation algorithms are discussed. With extensive simulations, we comprehensively investigate the accuracy, efficiency, and robustness of the barycenter estimation algorithms coupled with Bures-Wasserstein distance. The results show that Bures-Wasserstein based barycenter estimation algorithms are more efficient and robust.
翻译:大脑- 计算机界面( BCII) 通过记录大脑信号并将其转化为用于执行用户想象动作的装置指令, 在人类大脑和外部装置之间建立桥梁。 BCI 系统的核心是将输入信号标记为用户想象动作的分类器。 使用 Riemannian 几何直接分类共变矩阵的分类器不仅广泛用于 BCI 领域,而且广泛用于包括神经科学、遥感、生物医学成像等在内的各个领域。 然而, 现有的 Affine- Invariant Riemannian 方法将常态矩阵作为确定值处理, 用于执行用户想象的动作。 BCI 系统的核心是将输入信号标为用户想象动作动作的分类器。 此外, Affie- Invariant Riemannian 百分数计算算法变得耗时不稳健健, 当常态矩阵的尺寸和数量变得巨大时,还会出现趋同问题。 为了应对这些挑战,我们建立了基于 Bures- Wasserstestestein 的距离和新算法, 估算正态半定序矩阵的准确性矩阵和精确性算法是我们所讨论的理论和精确的逻辑- 的逻辑和精确性分析。</s>