We consider the decoding of rank metric codes assuming the error matrix is symmetric. We prove two results. First, for rates $<1/2$ there exists a broad family of rank metric codes for which any symmetric error pattern, even of maximal rank can be corrected. Moreover, the corresponding family of decodable codes includes Gabidulin codes of rate $<1/2$. Second, for rates $>1/2$, we propose a decoder correcting symmetric errors of rank up to $n-k$. The two mentioned decoders are deterministic and worst case.
翻译:我们认为,假设差错矩阵表是对称的,将标准代码解码。我们证明了两个结果。首先,对1/2美元的费率来说,存在着一个广泛的标准代码体系,可以纠正任何对称错误模式,甚至最高等级的对称错误模式,此外,相应的代码体系包括Gabidulin的费率 <1/2美元的编码。第二,对1/2美元的费率,我们建议对1/2美元的费率进行解码,以纠正最高为n-k美元的等级的对称错误。提到的两个代码是决定性的,也是最糟糕的。