Avatar creation from human images allows users to customize their digital figures in different styles. Existing rendering systems like Bitmoji, MetaHuman, and Google Cartoonset provide expressive rendering systems that serve as excellent design tools for users. However, twenty-plus parameters, some including hundreds of options, must be tuned to achieve ideal results. Thus it is challenging for users to create the perfect avatar. A machine learning model could be trained to predict avatars from images, however the annotators who label pairwise training data have the same difficulty as users, causing high label noise. In addition, each new rendering system or version update requires thousands of new training pairs. In this paper, we propose a Tag-based annotation method for avatar creation. Compared to direct annotation of labels, the proposed method: produces higher annotator agreements, causes machine learning to generates more consistent predictions, and only requires a marginal cost to add new rendering systems.
翻译:从人类图像中创造的阿凡达使得用户能够以不同的方式定制自己的数字数字。 Bitmoji、 MetaHuman 和 Google Cartoonset 等现有的合成系统提供了作为用户绝佳设计工具的表达式显示系统。 然而, 二十多个参数, 有些包括数百个选项, 必须调整以取得理想结果。 因此, 用户很难创建完美的变异体。 一个机器学习模型可以被培训来预测图像中的变异体, 但是贴上配对式培训数据的批注者与用户有同样的困难, 造成高标签噪音。 此外, 每个新发版系统或版本更新都需要数千个新的培训配对。 在本文中, 我们提议了一种基于标签的批注方法, 与直接批注标签相比, 提议的方法: 产生更高的批注协议, 导致机器学习产生更一致的预测, 并且只需要边际成本来添加新的变异系统 。