Real-time perception, or streaming perception, is a crucial aspect of autonomous driving that has yet to be thoroughly explored in existing research. To address this gap, we present DAMO-StreamNet, an optimized framework that combines recent advances from the YOLO series with a comprehensive analysis of spatial and temporal perception mechanisms, delivering a cutting-edge solution. The key innovations of DAMO-StreamNet are: (1) A robust neck structure incorporating deformable convolution, enhancing the receptive field and feature alignment capabilities. (2) A dual-branch structure that integrates short-path semantic features and long-path temporal features, improving motion state prediction accuracy. (3) Logits-level distillation for efficient optimization, aligning the logits of teacher and student networks in semantic space. (4) A real-time forecasting mechanism that updates support frame features with the current frame, ensuring seamless streaming perception during inference. Our experiments demonstrate that DAMO-StreamNet surpasses existing state-of-the-art methods, achieving 37.8% (normal size (600, 960)) and 43.3% (large size (1200, 1920)) sAP without using extra data. This work not only sets a new benchmark for real-time perception but also provides valuable insights for future research. Additionally, DAMO-StreamNet can be applied to various autonomous systems, such as drones and robots, paving the way for real-time perception. The code is available at https://github.com/zhiqic/DAMO-StreamNet.
翻译:实时感知,或称流式感知,在自动驾驶中至关重要,但目前尚未在现有研究中得到充分探索。为了解决这一问题,我们提出了DAMO-StreamNet,这是一个优化的框架,将YOLO系列的最新进展与空间和时间感知机制的全面分析相结合,提供了前沿的解决方案。DAMO-StreamNet的关键创新点是:(1)鲁棒的颈部结构,采用可变形卷积,增强了感受野和特征对齐能力;(2)双分支结构,将短路径语义特征和长路径时间特征整合,提高了运动状态预测的准确性;(3)日志级别蒸馏实现高效优化,将教师和学生网络的逻辑深度在语义空间中对齐;(4)实时预测机制,利用当前帧更新支持帧特征,确保推理期间的流式感知。我们的实验表明,DAMO-StreamNet超越了现有最先进的方法,实现了37.8%(正常尺寸(600,960))和43.3%(大尺寸(1200,1920))的sAP,而不需要使用额外的数据。该工作不仅为实时感知设定了新的基准,也为未来的研究提供了有价值的见解。此外,DAMO-StreamNet可以应用于各种自动化系统,例如无人机和机器人,为实时感知铺平了道路。代码可在https://github.com/zhiqic/DAMO-StreamNet获取。