We present a novel and effective method calibrating cross-modal features for text-based person search. Our method is cost-effective and can easily retrieve specific persons with textual captions. Specifically, its architecture is only a dual-encoder and a detachable cross-modal decoder. Without extra multi-level branches or complex interaction modules as the neck following the backbone, our model makes a high-speed inference only based on the dual-encoder. Besides, our method consists of two novel losses to provide fine-grained cross-modal features. A Sew loss takes the quality of textual captions as guidance and aligns features between image and text modalities. A Masking Caption Modeling (MCM) loss uses a masked captions prediction task to establish detailed and generic relationships between textual and visual parts. We show the top results in three popular benchmarks, including CUHK-PEDES, ICFG-PEDES, and RSTPReID. In particular, our method achieves 73.81% Rank@1, 74.25% Rank@1 and 57.35% Rank@1 on them, respectively. In addition, we also validate each component of our method with extensive experiments. We hope our powerful and scalable paradigm will serve as a solid baseline and help ease future research in text-based person search.


翻译:我们提出了一种新颖有效的方法,对文本搜索中的跨模态特征进行校准。我们的方法经济实用,可以便捷地通过文本标签检索特定的人物。具体来说,我们的模型仅由双编码器和可拆卸的跨模态解码器构成,没有额外的多级分支或复杂的交互模块,完全基于双编码器实现高速推断。此外,我们的方法包括两个新型损失,提供细粒度的跨模态特征。Sew 损失以文本标题的质量为指导,对图像和文本模态之间的特征进行对齐。Masking Caption Modeling(MCM)损失使用带掩码的标题预测任务,在文本和视觉部分之间建立详细而通用的关系。我们在三个流行的基准数据集(CUHK-PEDES、ICFG-PEDES和RSTPReID)上展示了顶级结果。特别是,在这些基准数据集中,我们的方法分别达到了73.81% Rank@1、74.25% Rank@1和57.35% Rank@1的排名。此外,我们还通过大量实验证明了我们方法的每个组成部分。我们希望我们强大而可扩展的模型可以作为一个坚实的基础线,并有助于简化未来文本搜索中的研究。

0
下载
关闭预览

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
文本+视觉,多篇 Visual/Video BERT 论文介绍
AI科技评论
21+阅读 · 2019年8月30日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员