We consider the Longest Queue Drop memory management policy in shared-memory switches consisting of $N$ output ports. The shared memory of size $M\geq N$ may have an arbitrary number of input ports. Each packet may be admitted by any incoming port, but must be destined to a specific output port and each output port may be used by only one queue. The Longest Queue Drop policy is a natural online strategy used in directing the packet flow in buffering problems. According to this policy and assuming unit packet values and cost of transmission, every incoming packet is accepted, whereas if the shared memory becomes full, one or more packets belonging to the longest queue are preempted, in order to make space for the newly arrived packets. It was proved in 2001 [Hahne et al., SPAA '01] that the Longest Queue Drop policy is 2-competitive and at least $\sqrt{2}$-competitive. It remained an open question whether a (2-\epsilon) upper bound for the competitive ratio of this policy could be shown, for any positive constant \epsilon. We show that the Longest Queue Drop online policy is 1.5-competitive.
翻译:我们考虑的是由美元输出端口组成的共享模样开关中最长的 Queau 滴存储管理政策。 共享大小为 $M\ geq N$ 的共享内存可能具有任意的输入端口数。 每个包可能由任何进港允许使用, 但必须指定给特定输出端, 每个输出端可能只使用一个队列 。 最长的 Que 滴政策是用于引导软件包流动的缓冲问题的自然在线战略 。 根据这个政策, 假设单位包值和传输成本, 每个进货包都被接受, 而如果共享内存完整, 属于最长队列的一个或多个包被提前取消, 以便为新到的包提供空间 。 2001年, [Hahne et al., SPA '01] 证明, 最长的 Queue 滴政策具有2 竞争力, 至少有 $\ qrt $2} 具有竞争力 。 根据这个政策, 每个进货包的上限是否( 2\ eplon) 可以显示该政策竞争率最高的比例, 为了任何积极的常态的在线竞争力。 我们展示了Lega Long 政策。