We introduce and study the online pause and resume problem. In this problem, a player attempts to find the $k$ lowest (alternatively, highest) prices in a sequence of fixed length $T$, which is revealed sequentially. At each time step, the player is presented with a price and decides whether to accept or reject it. The player incurs a switching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in the literature on online optimization, though it introduces unique technical challenges that prevent the direct application of existing algorithms. Extending prior work on threshold-based algorithms, we introduce double-threshold algorithms for both the minimization and maximization variants of this problem. We further show that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of carbon-aware load shifting using real carbon trace data and existing baseline algorithms.


翻译:我们引入并研究在线暂停恢复问题。在这个问题中,一个玩家试图在一个固定长度为 $T$ 的序列中找到 $k$ 个最低(或最高)的价格,而这个序列是逐步揭示的。每一步,玩家被呈现一个价格并决定是否接受或拒绝它。当玩家的决策在连续的时间步骤中发生改变时,即在暂停或恢复购买时,他们会产生切换成本。这个在线问题的出发点是碳感知负载转移的目标,其中负载可能在碳排放强度高的时期被暂停,在碳排放强度低的时期恢复,并在保存或恢复其状态时产生成本。它与已有的研究在线优化的问题有很强的联系,但它引入了独特的技术挑战,阻止了现有算法的直接应用。在阈值算法的基础上延伸,我们介绍了双阈值算法,既可以用于这个问题的最小化变体,也可以用于最大化变体。我们进一步展示了这些算法所实现的竞争比是任何确定性在线算法所能实现的最佳竞争比。最后,我们通过使用真实碳迹数据和现有基线算法的案例研究,从实证上验证了我们提出的算法。

0
下载
关闭预览

相关内容

多智能体顶级会议AAMAS2022最佳论文
专知会员服务
58+阅读 · 2022年5月15日
专知会员服务
16+阅读 · 2020年12月4日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关VIP内容
多智能体顶级会议AAMAS2022最佳论文
专知会员服务
58+阅读 · 2022年5月15日
专知会员服务
16+阅读 · 2020年12月4日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员