Image harmonization aims to generate a more realistic appearance of foreground and background for a composite image. Existing methods perform the same harmonization process for the whole foreground. However, the implanted foreground always contains different appearance patterns. All the existing solutions ignore the difference of each color block and losing some specific details. Therefore, we propose a novel global-local two stages framework for Fine-grained Region-aware Image Harmonization (FRIH), which is trained end-to-end. In the first stage, the whole input foreground mask is used to make a global coarse-grained harmonization. In the second stage, we adaptively cluster the input foreground mask into several submasks by the corresponding pixel RGB values in the composite image. Each submask and the coarsely adjusted image are concatenated respectively and fed into a lightweight cascaded module, adjusting the global harmonization performance according to the region-aware local feature. Moreover, we further designed a fusion prediction module by fusing features from all the cascaded decoder layers together to generate the final result, which could utilize the different degrees of harmonization results comprehensively. Without bells and whistles, our FRIH algorithm achieves the best performance on iHarmony4 dataset (PSNR is 38.19 dB) with a lightweight model. The parameters for our model are only 11.98 M, far below the existing methods.
翻译:图像统一旨在为复合图像生成更现实的前景和背景外观。 现有方法为整个前景进行相同的统一进程。 但是, 植入的前景总是包含不同的外观模式。 所有现有解决方案都忽略了每个颜色块的差异, 并失去了某些具体的细节。 因此, 我们提出一个新的全局- 本地两个阶段框架, 用于精度区域认知图像统一( FRIH), 该框架经过培训, 端到端。 在第一阶段, 整个输入的表面遮罩被用于实现全球粗度协调。 在第二阶段, 我们将输入的表面遮罩通过相对应的像素 RGB 值, 适应性地组合成几个子体。 每个子色和粗度调整的图像分别组合成一个轻量级的分级模块, 调整全球协调性能, 根据区域认知本地特征调整。 此外, 我们进一步设计了一个重度预测模块, 将所有分层层的特性混合在一起生成最终结果。 在第二阶段, 我们的 RGB 参数下, 将使用不同程度的 RIS 数据 实现最深的 RIS 。