项目名称: Lé过程和分数阶Lé过程驱动的动力系统的动力学性质研究
项目编号: No.11201089
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 黄在堂
作者单位: 广西师范学院
项目金额: 23万元
中文摘要: 本项目对Guass过程驱动的随机动力系统的分支理论进行深入研究,建立 Lé 过程和分数阶Lé过程驱动的动力系统的分支理论,从而进一步系统深入研究随机动力系统的动力学性质。 随机动力系统的Cocycle 性质验证和紧性问题是研究Gauss过程 、Lé过程 和分数阶Lé过程驱动的随机动力系统动力学行为的关健。探讨不同来源,不同统计特性下的Lé 过程驱动的动力系统的随机分岔、随机同(异)宿分支、随机吸引子和随机混沌等问题,研究随机吸引子、同(异)宿环、异维环和不变测度的几何结构和性质,以及不变测度与同(异)宿环和异同维环之间的关系。比较Lé过程 、分数阶Lé过程和Gauss过程驱动的动力系统的动力学性质的异同,分析和讨论随机动力系统与确定性动力系统的动力学本质区别,研究随机因素给微分动力系统带来的新问题和新现象。
中文关键词: Lé过程和分数阶 Lé 过程;随机动力系统;动力学性质;随机分支;不变测度
英文摘要: We deeply study bifurcation theory for random dynamical systems driven by Gaussian process, and we establish stochastic bifurcation theory for random dynamical systems driven by Lé processes and fractional Lé processes,thus we systematically study the dynamical nature of random dynamical system. The problem of cocycle property and compactness of random dynamical system is key. We discuss the problems of stochastic bifurcation, Homoclinic (Heteroclinic) loops bifurction, random attractor and stochastic chaos for random dynamical systems driven by the different sources and statistical properties stochastic process, we study the geometric structure and properties of random attractor, Homoclinic (Heteroclinic) loops, Heterodimensional cycle and invariant measure, and the relationship between the invariant measure and random Homoclinic (Heteroclinic) loops and Heterodimensional cycle. We compare the dynamical properties of stochastic dynamical systems driven by Lé processes, fractional Lé processes and Gaussian processes, and we analyze and discuss the essential difference between random dynamical systems and deterministic dynamical systems, and we study the new problems and phenomena of the differential dynamical systems driven by random factor.
英文关键词: Lé processes and fractional Lé processes;Random dynamical system;Dynamics properties;Stochastic bifurcation;Invariance measures