Inspired by the success of neural networks in the classical machine learning tasks, there has been tremendous effort to develop quantum neural networks (QNNs), especially for quantum data or tasks that are inherently quantum in nature. Currently, with the imminent advent of quantum computing processors to evade the computational and thermodynamic limitation of classical computations,} designing an efficient quantum neural network becomes a valuable task in quantum machine learning. In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed. {Specifically, a multiple layer quantum perceptron with residual connection is provided. Our ResQNN is able to learn an unknown unitary and get remarkable performance. Besides, the model can be trained with an end-to-end fashion, as analogue of the backpropagation in the classical neural networks. To explore the effectiveness of our ResQNN , we perform extensive experiments on the quantum data under the setting of both clean and noisy training data. The experimental results show the robustness and superiority of our ResQNN, when compared to current remarkable work, which is from \textit{Nature communications, 2020}. Moreover, when training with higher proportion of noisy data, the superiority of our ResQNN model can be even significant, which implies the generalization ability and the remarkable tolerance for noisy data of the proposed method.


翻译:在古典机器学习任务中,神经网络的成功激励下,人们做出了巨大的努力来开发量子神经网络,特别是量子数据或具有内在量子性质的任务。目前,随着量子计算处理器即将到来,以避开古典计算中的计算和热动力限制,}设计高效量子神经网络成为量子机器学习的一项宝贵任务。在本文中,提议建立一个具有深层残余学习的新型量子神经网络(ResQNN)。{具体地说,提供了多层级的剩余连接的量子感应器。我们的量子神经网络能够学习未知的单一数据或具有显著的性能。此外,随着量子计算处理器即将到端端,可以模拟古典神经网络中的反向再造法。为了探索我们量子神经网络的有效性,我们根据清洁和噪音培训数据设置的设置,对量子数据进行了广泛的实验。实验结果显示,与当前令人瞩目的高级工作相比,我们ResQNNN能够学习一个未知的强性和优越性,甚至从中学习一个未知的单一通信能力,在2020年的高级数据中可以学习。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员